Advertisement

Overview of Superconducting Materials Development

  • J. K. Hulm
  • B. T. Matthias
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 68)

Abstract

The theme of this Institute is the science and technology of superconducting materials. This is a field which has advanced quite rapidly in the last 20 years. It seems likely that superconductors will be applied to large electrical power generators in the next few years, and possibly to other heavy power equipment such as transformers and transmission lines. Superconducting magnets appear to be of vital importance to certain developing energy technologies such as fusion and magnetohydrodynamic power equipment, which may be crucial to the future economic health of all major industrial nations. The superconducting Josephson junction has evidently secured an important niche in the electronic hierarchy of advanced computer systems. Superconducting technology is thus advancing on several fronts and is a very timely subject for a NATO Institute.

Keywords

Critical Temperature Pure Metal Critical Current Density Critical Field Material Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. K. Onnes, Leiden Communication, 124c (1911).Google Scholar
  2. 2.
    H. K. Onnes, Leiden Communication, 140b,c; 141b (1914).Google Scholar
  3. 3.
    P. Grassman, Phys. Z., 37 569 (1936).Google Scholar
  4. 4.
    H. K. Onnes, Leiden Communication, 133d (1913).Google Scholar
  5. 5.
    H. K. Onnes, Leiden Communication, 139(1914).Google Scholar
  6. 6.
    F. B. Silsbee, J. Wash. Acad. Sci. 6, 597 (1916).Google Scholar
  7. 7.
    W. Meissner and R. Ochsenfeld, Naturwissenschaften 21, 787 (1933).ADSGoogle Scholar
  8. 8.
    J. K. Hulmand B. T. Matthias, Phys. Rev. 82, 273 (1951).ADSGoogle Scholar
  9. 9.
    R. Becker, G. Heller and F. Sauter, Z. Phys. 85, 772 (1933).ADSGoogle Scholar
  10. 10.
    F. London and H. London, Proc. Roy. Soc. A 149 71 (1935).ADSMATHGoogle Scholar
  11. 11.
    J. M. Lock, Proc. Roy. Soc. A 208 391 (1951).ADSGoogle Scholar
  12. 12.
    N. E. Alekseyevsky, Joum. Phys. USSR 4, 401 (1941).Google Scholar
  13. 13.
    W. H. Keesom, Proc. of the 4th Solvay Congress, p.22 (1924).Google Scholar
  14. 14.
    P. Ehrenfest, Leiden Communication Supplement 75b (1933).Google Scholar
  15. 15.
    A. Rutgers, Physica 1, 1055 (1934).ADSMATHGoogle Scholar
  16. 16.
    C. J. Gorter, Arch. Mus. Teyler 7, 378 (1933).Google Scholar
  17. 17.
    D. Shoenberg, “Superconductivity”, Cambridge Univ. Press, Cambridge, 1960.Google Scholar
  18. 18.
    C.J. Gorter and H. B. G. Casimir, Phys. Z. 35, 963 (1934).Google Scholar
  19. 19.
    V. L. Ginsburg and L. D. Landau, JETP 20, 1064 (1950).Google Scholar
  20. 20.
    J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).MathSciNetADSMATHGoogle Scholar
  21. 21.
    P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962).ADSGoogle Scholar
  22. 22.
    T. H. Geballe and B. T. Matthias, IBM J. of Research & Development 6, 256 (1962).Google Scholar
  23. 23.
    W. L. McMillan, Phys. Rev. 167 331 (1968).ADSGoogle Scholar
  24. 24.
    W. M. Guertler, J. Inst. Metals 42 91 (1929).Google Scholar
  25. 25.
    J. F. Allen, Phil. Mag. 16 1005 (1933).Google Scholar
  26. 26.
    W. J. de Haas, E. Van Aubel and J. Voogd, Leiden Communication, 197a, b,c,d (1929).Google Scholar
  27. 27.
    W. Meissner, Z. Phys. 58 570 (1929).ADSGoogle Scholar
  28. 28.
    W. Meissner, H. Franz and H. Westerhoff, Annalen der Physik 13, 505 and 967 (1932).Google Scholar
  29. 29.
    J. C. McClennan, J. F. Allen and J, O. Wilhelm, Trans. Roy. Soc. Canada 24 III, 53 (1930).Google Scholar
  30. 30.
    B. T. Matthias, Phys. Rev. 97, 74 (1955).ADSGoogle Scholar
  31. 31.
    W. J. de Haas and J. Voogd, Leiden Communication, 208b (1930).Google Scholar
  32. 32.
    L. W Schubnikow et al., Phys. Zeit, Soviet Union, 10 165 (1936).Google Scholar
  33. 33.
    K. Mendelssohn, Proc. Roy. Soc. A 152 34 (1935).Google Scholar
  34. 34.
    W. H. Keesom, Physica 2, 35 (1935).ADSGoogle Scholar
  35. 35.
    J. N. Rjabinin and L. W. Schubnikow, Nature 135 581 (1935).ADSGoogle Scholar
  36. 36.
    J. W. Stout and L. Guttman, Phys. Rev. 88, 703 (1952).ADSGoogle Scholar
  37. 37.
    C.J. Gorter, Physica 2, 449 (1935).ADSMATHGoogle Scholar
  38. 38.
    H. London, Proc. Roy. Soc. A 152 650 (1935).ADSMATHGoogle Scholar
  39. 39.
    W. Meissner, Phys. Zeit 29 897 (1928).Google Scholar
  40. 40.
    W. Meissner, Z, Phys. M, 60 181 (1930).ADSGoogle Scholar
  41. 41.
    W. Meissner and H. Franz, Z. Phys. 63 558 (1930).ADSGoogle Scholar
  42. 42.
    W. Meissner and H. Franz, Z. Phys. 65 30 (1930).ADSGoogle Scholar
  43. 43.
    W. Meissner, H. Franz and H. Westerhoff, Z. Phys. 75, 521 (1932).ADSGoogle Scholar
  44. 44.
    W. Meissner, H. Franz and H. Westerhoff, Ann. Phys. LPZ 13, 505 (1932).Google Scholar
  45. 45.
    W. Meissner, H. Franz and H. Westerhoff, Ann. Phys. LPZ 17, 593 (1933).ADSGoogle Scholar
  46. 46.
    W. Meissner and H. Westerhoff, Z. Phys., 87, 206 (1934).ADSGoogle Scholar
  47. 47.
    N. Kurti and F. E. Simon, Proc. Roy. Soc. A., 151, 610 (1935).ADSGoogle Scholar
  48. 48.
    G. Aschermann, E. Friederich, E. Justiand, J. Kramer, Phys. Zeit., 42 349 (1941).Google Scholar
  49. 49.
    G. F. Hardy and J. K. Hülm, Phys. Rev., 93, 1004 (1954).ADSGoogle Scholar
  50. 50.
    A. L. Giorgi, et al., Phys. Rev., 125 837 (1962).ADSGoogle Scholar
  51. 51.
    R. H Willens, E. Buehlerand, B. T. Matthias, Phys. Rev., 159, 327 (1967).ADSGoogle Scholar
  52. 52.
    J. K. Hülm and R. D. Blaugher, Phys. Rev., 123, 1569 (1961).ADSGoogle Scholar
  53. 53.
    B. T. Matthias, Phys. Rev., 97, 74 (1955).ADSGoogle Scholar
  54. 54.
    J. K. Hülm and R. D. Blaugher, Proc. of Conf. on Superconductivity in d-and f-Band Metals, Ed. D. H. Douglass, Pub.AIP, Rochester, NY, Oct. 1971.Google Scholar
  55. 55.
    V. B. Compton, et al Phys. Rev., 123, 1567 (1961).ADSGoogle Scholar
  56. 56.
    J. K. Hülm, R. D. Blaugher, T. H. Geballe and B. T. Matthias, Phys. Rev. Letters, 7, 302 (1961).ADSGoogle Scholar
  57. 57.
    B. W. Veal, J. K. Hülm and R. D. Blaugher, Ann. Acad. Sci. Fennicae, A210, 108 (1966).Google Scholar
  58. 58.
    R. A. Hein, J. W. Gibson and R. D. Blaugher, Rev. Mod. Phys., 36 149 (1964).ADSGoogle Scholar
  59. 59.
    C. H. Cheng, K. P. Gupta, E. C. Van Reuth and P. A. Beck, Phys. Rev., 127, 2030 (1962).ADSGoogle Scholar
  60. 60.
    F. J. Morin and J. P. Malta, Phys. Rev., 129, 1115 (1963).ADSGoogle Scholar
  61. 61.
    F. Heiniger, E. Bucherand, J. Muller, Phys. Kond. Mat., 5, 243 (1966).Google Scholar
  62. 62.
    B. T. Matthias, V. B. Compton and E. Corenzwit, J. Phys. Chem. Solids, 19, 130 (1961).ADSGoogle Scholar
  63. 63.
    L. E. Toth, C. P. Yang and C. M. Yen, ACTA Metallurgica, 14, 1403 (1966).Google Scholar
  64. 64.
    G. Hom and E. Saur, Z. Physik, 210 170 (1968).Google Scholar
  65. 65.
    B. T. Matthias, Phys. Rev., 92, 274 (1953).ADSGoogle Scholar
  66. 66.
    N. Pessall and J. K. Hülm, Physics, 2, 311 (1966).Google Scholar
  67. 67.
    T. H. Geballe, et al., Physics, 2, 293 (1966).Google Scholar
  68. 68.
    L. F. Mattheiss, Phys. Rev., 138 A112 (1965).ADSGoogle Scholar
  69. 69.
    G. F. Hardy and J. K. Hülm, Phys. Rev., 87 884 (1953); 93, 1004 (1954).ADSGoogle Scholar
  70. 70.
    B. T. Matthias, T. H. Geballe, S. Geller and E. Corenzwit, Phys. Rev., 95, 1453 (1954).ADSGoogle Scholar
  71. 71.
    B. T. Matthias, T. H. Geballe, L.D. Longinotti, E. Corenzwit, G. W. Hull, R. H. Willens and J. P. Maita, Science, 156 645 (1967).ADSGoogle Scholar
  72. 72.
    J. R. Gavler, Appl. Phys. Lett., 23, 480 (1973).ADSGoogle Scholar
  73. 73.
    R. D. Blaugher and J. K. Hülm, J. Phys Chem. Solids, 19 134 (1961).ADSGoogle Scholar
  74. 74.
    D. Dew-Hughes, Metallurgy of Superconducting Materials, p. 143, Academic Press, N. Y. (1979).Google Scholar
  75. 75.
    A. R. Sweedler, C. L. Snead and D. E, Cox, p. 373.Google Scholar
  76. 76.
    A. Junod, J. L. Staudermann, J Muller and P. Spitzli, J. Low Temp. Physics, 5, 25 (1971).ADSGoogle Scholar
  77. 77.
    R. D. Blaugher, R. E. Hein, J. E. Cox and R. M. Waterstrat, J. Low Temp. Physics, 1, 539 (1969).ADSGoogle Scholar
  78. 78.
    J. K. Hülm and R. D. Blaugher, Proc. of 13th Low Temp. Physics Conf., Plenum Press, N. Y. (1972).Google Scholar
  79. 79.
    D. A. Rogowski and R. Roy, J. Appl. Physics, 47, 4635 (1976).ADSGoogle Scholar
  80. 80.
    J. Labbe and J. Friedel, J. Physique, 27 153, 303 (1966).Google Scholar
  81. 81.
    L. F. Mattheiss, Phys. Rev., 138, A112 (1965).ADSGoogle Scholar
  82. 82.
    R. W. Cohen, G. D. Cody and J. J. Halloran, Phys. Rev. Lett. 19, 840 (1967).ADSGoogle Scholar
  83. 83.
    G. B. Yntema, Phys. Rev., 98 1197 (1955).Google Scholar
  84. 84.
    S. H. Autler, Rev. Sci. Inst., 31 369 (1960).ADSGoogle Scholar
  85. 85.
    J. K. Hülm, Phys. Rev., 98 1539 (1955).Google Scholar
  86. 86.
    J. E. Kunzler, et al., J. Appl. Physics, 32 325 (1961).ADSGoogle Scholar
  87. 87.
    J. E. Kunzler, E. Beuhler, F. S. L. Hsu and J. H. Wemick, Phys. Rev. Lett. 6, 89 (1961).ADSGoogle Scholar
  88. 88.
    F. London, Superfluids, Vol. I, John Wiley & Sons, N.Y. (1950).MATHGoogle Scholar
  89. 89.
    A. B. Pippard, Proc. Roy. Soc. A., 216 547 (1953).ADSGoogle Scholar
  90. 90.
    A. A. Abrikosov, JETP, 32 1442 (1957).Google Scholar
  91. 91.
    V. L. Ginsburgand L. D. Landau, JETP, 20, 1064 (1950).Google Scholar
  92. 92.
    L. P. Gor’kov, JETP, 37 835 (1959).Google Scholar
  93. 93.
    C.J. Gorter, Physics Lett., 1, 69 (1963).ADSGoogle Scholar
  94. 94.
    P. W. Anderson, Phys. Rev, Lett., 9, 309 (1962).ADSGoogle Scholar
  95. 95.
    N. R. Werthamer, E. Helfandand, P. C. Hohenberg, Phys. Rev., 147, 195 (1966).ADSGoogle Scholar
  96. 96.
    K. Maki, Phys. Rev. 148, 362 (1966).ADSGoogle Scholar
  97. 97.
    T. P. Orlando, E. J. McNiff Jr., S. Fonerand, M. R. Beasley, Phys. Rev. B, 19 4545 (1979).ADSGoogle Scholar
  98. 98.
    S. Foner, E. J. McNiff Jr., and E. J. Alexander, Phys. Lett., 49A, 269 (1974).ADSGoogle Scholar
  99. 99.
    L. Neuringer and Y. Shapira, Phys. Rev. Lett, 17, 81 (1966).ADSGoogle Scholar
  100. 100.
    F. R. Gamble, Science, 174, 493 (1971).ADSGoogle Scholar
  101. 101.
    W. A. Lltüe, Phys. Rev. A, 134 1416 (1964).Google Scholar
  102. 102.
    R. L. Greene, G. B. Street and L. J. Suter, Phys. Rev. Lett., 34 577 (1975).ADSGoogle Scholar
  103. 103.
    D. Jerome, M. Ribault and K. Bechgaard, New Scientist, July 10 (1980).Google Scholar
  104. 104.
    J. K. Hülm, M. Ashkin, D. W. Deis and C. K. Jones, Progress in Low Temp. Physics, VI, 205 (1970).Google Scholar
  105. 105.
    W. A. Fertig, et al., Phys. Rev. Lett., 38, 987 (1977).ADSGoogle Scholar
  106. 106.
    R. H. Hammond, IEEE Trans. Magnetics, MAG 11, 201 (1975).MathSciNetADSGoogle Scholar
  107. 107.
    R. E. Somekhand, J. E. Evetts, Solid State Communications, 24, 733 (1977).ADSGoogle Scholar
  108. 108.
    V. M. Pan, et al J.E.T.P. Lett., 21, 228 (1975).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • J. K. Hulm
    • 1
  • B. T. Matthias
    • 2
  1. 1.Westinghouse Research LaboratoryPittsburghUSA
  2. 2.University of CaliforniaLa JollaUSA

Personalised recommendations