Advertisement

Metabolic Acclimatization to Cold and Season in Birds

  • William R. Dawson
  • Richard L. Marsh
Part of the NATO ASI Series book series (ASIAS, volume 173)

Abstract

With the prominent role augmented rates of thermogenesis play in the regulation of body temperature by most birds in winter cold, it is of interest to examine the extent to which this process is affected by metabolic acclimatization. Such adjustment affects not only the cold resistance of these animals, but also their energy requirements in a season when food supplies are declining and the time to locate them minimal. We shall emphasize naturally occurring forms of metabolic acclimatization in wild birds, but some consideration also will be given to that associated with exposure to cold in the laboratory. Smaller birds are of primary concern because of their limited capacities for insulative acclimatization, though indications of metabolic acclimatization in larger forms also will be considered. Particular attention will be devoted to indications of acclimatization involving metabolic level, thermogenic capacity, endurance in the cold, extent of energy reserves, and the biochemical correlates of cold resistance. Our goal is to characterize metabolic acclimatization by birds to cold and season to an extent commensurate with current knowledge of this form of compensation.

Keywords

Wild Bird House Sparrow Cold Resistance Pectoralis Muscle Metabolic Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambrose, S. J., and Bradshaw, S. D., 1988, Seasonal changes in standard metabolic rates in the white-browed scrubwren Sericornis frontalis (Acanthizidae) from arid, semi-arid, and mesic environments. Comp. Biochem. Physiol., 89A: 79.CrossRefGoogle Scholar
  2. Arieli, A., Berman, A., and Meltzer, A., 1979, Cold thermogenesis in the summer-acclimatized and winter-acclimated domestic fowl, Comp. Biochem. Physiol., 63C: 7.Google Scholar
  3. Barré, H., 1986, Metabolic and insulative changes in winter-and summeracclimatized king penguin chicks, J. Comp. Physiol., B154: 317.Google Scholar
  4. Barré, H., Cohen-Adad, F., and Rouanet, J., 1987, Two daily glucagon injections induce nonshivering thermogenesis in Muscovy ducklings. Am. J. Physiol., 252: E616.PubMedGoogle Scholar
  5. Barré, H., and Roussel, B., 1986, Thermal and metabolic adaptation to first cold-water immersion in juvenile penguins, Am. J. physiol., 251: R456.PubMedGoogle Scholar
  6. Bech, C., 1980, Body temperature, metabolic rate, and insulation in winter and summer acclimatized mute swans (Cygnus olor), J. Comp. Physiol., B136: 61.CrossRefGoogle Scholar
  7. Blem, C. R., 1973, Geographic variation in the bioenergetics of the house sparrow, Qrnithol. Monogr., 14: 96.CrossRefGoogle Scholar
  8. Blem, C. R., 1976, Patterns of lipid storage and utilization in birds, Am. Zool., 16: 671.Google Scholar
  9. Blem, C. R., and Pagels, J. F., 1984, Mid-winter lipid reserves of the golden-crowned kinglet, Condor, 86: 491.CrossRefGoogle Scholar
  10. Brackenbury, J., 1984, Physiological responses of birds to flight and running, Biol. Rev., 59: 559.PubMedCrossRefGoogle Scholar
  11. Brody, S., 1945, “Bioenergetics and Growth,” Reinhold Publishing Corp., New York.Google Scholar
  12. Calder, W. A., 1984, “Size, Function, and Life History,” Harvard Univ. Press, Cambridge, MA.Google Scholar
  13. Callow, M., Morten, A., and Guppy, M., 1986, Marathon fatigue: the role of plasma free fatty acids, Eur. J. Appl. Physiol., 55: 654.CrossRefGoogle Scholar
  14. Cannon, B., and Nedergaard, J., 1988, Shivering and non-shivering thermogenesis in birds, this volume.Google Scholar
  15. Carey, C., Dawson, W. R., Maxwell, L. C., and Faulkner, J. A., 1978, Seasonal acclimatization to temperature in cardueline finches. II. Changes in body composition and mass in relation to season and acute cold stress, J. Comp. Physiol., B125: 101.CrossRefGoogle Scholar
  16. Carey, C., Marsh, R. L., Bekoff, A. C., and Olin, A., 1988, Enzyme activities and muscular patterns of shivering in house finches, this volume.Google Scholar
  17. Clark, J. H., and Conlee, R. K., 1979, Muscle and liver glycogen content: diurnal variation and endurance, J. Appl. Physiol., 47: 425.PubMedGoogle Scholar
  18. Dawson, W. R., 1958, Relation of oxygen consumption ancf evaporative water loss to temperature in the cardinal, Physiol. Zool., 31: 37.Google Scholar
  19. Dawson, W. R., Buttemer, W. A., and Carey, C., 1985, A reexaminat ion of the metabolic response of house finches to temperature, Condor, 87: 424.CrossRefGoogle Scholar
  20. Dawson, W. R., and Carey, C., 1976, Seasonal acclimatization to temperature in cardueline finches. I. Insulative and metabolic adjustments, J. Comp. Physiol., 112: 317.CrossRefGoogle Scholar
  21. Dawson, W. R., and Marsh, R. L., 1986, Winter fattening in the American goldfinch and the possible role of temperature in its regulation, Physiol. Zool., 59: 357.Google Scholar
  22. Dawson, W. R., Marsh, R. L., Buttemer, W. A., and Carey, C., 1983a, Seasonal and geographic variation of cold resistance in house finches Carpodacus mexicanus, Physiol. Zool., 56: 353.Google Scholar
  23. Dawson, W. R., Marsh, R. L., and Yacoe, M. E., 1983b, Metabolic adjustments of small passerine birds for migration and cold, Am. J. Physiol., 245: R755.PubMedGoogle Scholar
  24. Dawson, W. R., and Smith, B. K., 1986, Seasonal acclimatization in the American goldfinch (Carduelis trirstis), In: “Living in the Cold,” H. C. Heller, X. J. Musacchia, and L. C. H. Wang, eds., Elsevier Science Publishing Co., New York.Google Scholar
  25. Dawson, W. R., and Tordoff, H. B., 1959, Relation of oxygen consumption to temperature in the evening grosbeak, Condor, 61: 388.CrossRefGoogle Scholar
  26. Depocas, F., 1962, Body glucose as fuel in white rats exposed to cold: results with fasted rats, Am. J. Physiol., 202: 1015.PubMedGoogle Scholar
  27. Dontcheff, L., and Kayser, C., 1934, Le rythme saisonnier du métabolisme de base chez le pigeon en fonction de la température moyenne du milieu, Ann. Physiol Physiocohim. Biol., 10: 285.Google Scholar
  28. Evans, P. R., 1969, Winter fat deposition and overnight survival of yellow buntings (Emberiza citrinella L.), J. Anim.Ecol., 38: 415.CrossRefGoogle Scholar
  29. Gelineo, S., 1934, Influence du milieu thermique sur la courbe de la thermorégulation, Compt. Rend.Soc. Biol., 117: 40.Google Scholar
  30. Gelineo, S., 1955, Température d’adaptation et production de chaleur chez oiseaux de petite taille, Arch. Sci. Physiol., 9: 225.Google Scholar
  31. Gelineo, S., 1964, Organ systems in adaptation: the temperature regulating system, In: “Handbook of Physiology, Section 4, Adaptation to Environment,” D. B. Dill, ed., American Physiological Society, Washington, D. C.Google Scholar
  32. Gelineo, S., 1969, Heat production in birds in summer and winter, Srpska Akad. Nauka I Umetnosti Belgrad, Bull Classe Sci Math. Natur., XXVI, Sci. Natur. (n. s.), no. 12: 99Google Scholar
  33. George, J. C., and John, T. M., 1986, Physiological responses to cold exposure in pigeons. In: “Living in the Cold,” H. C. Heller, X. J. Musacchia, and L. C. H. Wang, eds., Elsevier Science Publishing Co., New York.Google Scholar
  34. Giaja, J., 1925, Le métabolisme de sommet et le quotient métabolique, Ann. Physiol. Physcicochim. Biol., 1: 596.Google Scholar
  35. Giaja, J., 1931, Contribution à l’étude de la thermorégulation des oiseaux, Ann. Physiol. Physicochim. Biol., 7: 13.Google Scholar
  36. Hart, J. S., 1962, Seasonal acclimatization in four species of small wild birds, Physiol. Zool., 35: 224.Google Scholar
  37. Hart, J. S., 1964, Insulative and metabolic adaptations to cold in vertebrates, Soc. Exp. Biol. Symp., 35: 31.Google Scholar
  38. Hartman, F. A., 1961, Locomotor mechanisms in birds, Smithsonian Misc. Coll., 143: 1.Google Scholar
  39. Harvey, S., Klandorf, H., Foltzer, C., Strosser, M. T., and Phillips, J. G., 1985, Endocrine responses of ducks (Anas platyrhynchos) to treadmill exercise, Gen. Comp. Endocr., 48: 415.CrossRefGoogle Scholar
  40. Hissa, R., and Palokangas, R., 1970, Thermoregulation in the titmouse (Parus major L.), Comp. Biochem. Physiol., 33: 942.CrossRefGoogle Scholar
  41. Hohtola, E., 1982, Thermal and electromyographic correlates of shivering thermogenesis in the pigeon, Comp. Biochem. Physiol., 73A: 159.CrossRefGoogle Scholar
  42. Hohtola, E., and Stevens, E. D., 1986, The relationship of muscle electrical activity, tremor and heat production to shivering thermogenesis in Japanese quail, J. Exp. Biol., 125: 119.PubMedGoogle Scholar
  43. Irving, L., Krog, J., and Monson, M., 1955, The metabolism of some Alaskan animals in winter and summer, Physiol. Zool., 28: 173.Google Scholar
  44. Johnson, S. R., and McTaggart Cowan, I., 1975, The energy cycle and thermal tolerance of the starlings (Aves, Sturnidae) in North America, Can. J. Zool., 53: 55.PubMedCrossRefGoogle Scholar
  45. Karlsson, J., Nordesjo, L.-O., and Saltin, B., 1974, Muscle glycogen utilization during exercise after physical training, Acta Physiol. Scand., 90: 210.PubMedCrossRefGoogle Scholar
  46. King, J. R., 1972, Adaptive periodic fat storage by birds, Proc. XVth Internat. Ornith. Congr., p. 201.Google Scholar
  47. King, J. R., and Farner, D. S., 1961, Energy metabolism, thermoregulation and body temperature, In: “Biology and Comparative Physiology of Birds,” Vol. II, A. J. Marshall, ed., Academic Press, New York.Google Scholar
  48. Kendeigh, S. C., 1944, Effect of air temperature on the rate of energy metabolism of the English sparrow, J. Exp. Zool., 96: 1.CrossRefGoogle Scholar
  49. Koteja, P, 1986, Maximum cold-induced oxygen consumption in the house sparrow Passer domesticus L., Physiol. Zool., 59: 43.Google Scholar
  50. LeClerq, B., 1984, Adipose tissue metabolism and its control in birds, Poultry Sci., 63: 2044.CrossRefGoogle Scholar
  51. McCumbee, W. D., and Hazelwood, R. L., 1978, Sensitivity of chicken and rat adipocytes and hepatocytes to isologous and heterologous pancreatic hormones, Gen. Comp. Endocr., 34: 421.PubMedCrossRefGoogle Scholar
  52. Marsh, R. L., Carey, C., and Dawson, W. R., 1984, Substrate concentrations and turnover of plasma glucose during cold exposure in seasonally acclimatized house finches, Carpodacus mexicanus, J. Comp. Physiol., B154: 469.CrossRefGoogle Scholar
  53. Marsh, R. L., and Dawson, W. R., 1982, Substrate metabolism in seasonally acclimatized American goldfinches, Am. J. Physiol., 242: R563.PubMedGoogle Scholar
  54. Marsh, R. L., and Dawson, W. R., 1988a, Avian adjustments to cold, In: “Animal Adaptation to Cold,” L. Wang, ed., Springer-Verlag, Berlin. (In press)Google Scholar
  55. Marsh, R. L., Dawson, W. R., 1988b, Metabolism of energy substrates and seasonal acclimatization, this volume.Google Scholar
  56. Marsh, R. L., Dawson, W. R., Camilliere, J., and Olson, J. M., 1989, Regulation of glycolysis in the pectoralis muscles of seasonally acclimatized American goldfinches exposed to cold, Am. J. Physiol., submitted.Google Scholar
  57. Miller, D. S., 1939, A study of the physiology of the sparrow thyroid, J. Exp. Zool., 80: 259.CrossRefGoogle Scholar
  58. Minaire, Y., Vincent-Falquet, J.-C., Pernod, A., and Chatonnet, J., 1973, Energy supply in acute cold-exposed dogs, J. Appl. Physiol., 35: 51.PubMedGoogle Scholar
  59. Pearce, J., 1977, Some differences between avian and mammalian biochemistry, Internat. J. Biochem., 8: 269.CrossRefGoogle Scholar
  60. Randle, P. J., Tubbs, P. K., 1979, Carbohydrate and fatty acid metabolism, In: “Handbook of Physiology, Section 2, The Cardiovascular System, Vol. 1, The Heart,” R. M. Berne, N. Sperelakis, and S. R. Geiger, eds., American Physiological Society, New York.Google Scholar
  61. Rennie, M. J., Winder. W. W., and Holloszy, J. O., 1976, A sparing effect of plasma fatty acids on muscle and liver glycogen content of the exercising rat, Biochem. J., 156: 649.Google Scholar
  62. Riesenfeld, G., Berman, A., and Hurwitz, S., 1979, Glucose kinetics and heat production in normotherraic, hypothermic, and hyperthermic fasted chickens, Comp. Biochem. Physiol., 67A: 199.Google Scholar
  63. Rogers, C. M., Ketterson, E. D., and Nolan, Jr., V., 1988, Regulation of winter fattening in dark-eyed juncos Junco hyemalis hyemalis: a geographical perspective, unpublished ms.Google Scholar
  64. Rosenmann, M., and Morrison, P., 1974, Maximum oxygen consumption and heat loss facilitation in small homeotherms by He-O2, Am. J. Physio1., 226: 490.Google Scholar
  65. Saarela, S., 1988, Thermogenic capacity of greenfinches and siskins in winter and summer, this volume.Google Scholar
  66. Scholander, P. F., Hock, R., Walters, V., Johnson, F., and Irving, L., 1950, Heat regulation in some arctic and tropical mammals and birds, Biol. Bull., 99: 237.PubMedCrossRefGoogle Scholar
  67. Steube, M. M., and Ketterson, E. D., 1982, A study of fasting in tree sparrows (Spizella arborea) and dark-eyed juncos (Junco hyemalis): ecological implications, Auk, 99: 299.Google Scholar
  68. Thomas, V. G., and George, J. C., 1975, Changes in plasma, liver, and muscle metabolite levels in Japanese quail exposed to cold, J. Comp. Physiol., 100: 297.CrossRefGoogle Scholar
  69. Wallgren, H., 1954, Energy metabolism of two species of the genus Emberiza as correlated with distribution and migration, Acta Zool. Fennica, 84: 1.Google Scholar
  70. West, G. C., 1965, Shivering and heat production in wild birds, Physiol. Zool., 38: 111.Google Scholar
  71. Withers, P. C., 1977, Respiration, metabolism, and heat exchange of euthermic and torpid poorwills and hummingbirds, Physiol. Zool., 50: 43.Google Scholar
  72. Yacoe, M. E., and Dawson, W. R., 1983, Seasonal acclimatization in American goldfinches: the role of the pectoralis muscle, Am. J. Physiol., 242: R265.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • William R. Dawson
    • 1
    • 2
  • Richard L. Marsh
    • 1
    • 2
  1. 1.Museum of Zoology and Department of BiologyThe University of MichiganAnn ArborUSA
  2. 2.Department of BiologyNortheastern UniversityBostonUSA

Personalised recommendations