Advertisement

Nonshivering Thermogenesis in Winter-Acclimatized King Penguin Chicks

  • Claude Duchamp
  • Hervé Barré
  • Didier Delage
  • Gilles Berne
  • Pierre Brebion
  • Jean-Louis Rouanet
Part of the NATO ASI Series book series (ASIAS, volume 173)

Abstract

Nonshivering thermogenesis (NST) has long been denied in birds as refered in the works of Steen & Enger (1957), Hart (1962), West (1965), and more recently Saarela & Vakkuri (1982), Rintamaki et al. (1983). NST was regarded as a feature of mammals because of the lack of the thermogenic brown adipose tissue, the most exclusive site of this heat production. A multilocular pink adipose tissue differentiated in response to cold acclimation in young ducklings was found in our laboratory, but its biochemical properties led it rather to a role in substrate supply (Barré et al. 1986a).

Keywords

Cold Acclimation Rest Metabolic Rate Black Grouse Cytochrome Oxidase Activity Control Chick 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, G., Cold thermogenesis. In: Environmental Physiology III, edited by D. Robertshaw. Baltimore, MD: University Park, 1979, vol. 20, p. 43-155 (Int. Rev. Physiol. Ser.).Google Scholar
  2. Aulie, A. and Grav H.J., 1979, Effect of cold acclimation on the oxidative capacity of skeletal muscles and liver in young bantam chicks, Comp. Biochem. Physiol., 62A: 335–338.CrossRefGoogle Scholar
  3. Barré, H., 1984, Metabolic and insulative changes in winter-and summer-acclimatized chicks, J. Comp. Physiol., B154: 317–324.CrossRefGoogle Scholar
  4. Barré, H., Cohen-Adad, F., Duchamp, C. and Rouanet, J.L., 1986a, Multilocular adipocytes from muscovy ducklings differentiated in response to cold acclimation. J. Physiol. (London), 375: 27–38.PubMedCentralGoogle Scholar
  5. Barré, H., Cohen-Adad, F., and Rouanet, J.L., 1987, Two daily glucagon injections induce nonshivering thermogenesis in muscovy ducklings, Amer. J. Physiol., 252: E616–E620.PubMedGoogle Scholar
  6. Barré, H., Géloën, A., Chatonnet, J., Dittmar, A. and Rouanet, J.L., 1985, Potentiated muscular thermogenesis in cold-acclimated muscovy duckling, Amer. J. Physiol., 249: R533–538PubMedGoogle Scholar
  7. Barré, H., Nedergaard, J. and Cannon, B., 1986b, Increased respiration in skeletal muscles mitochondria from cold-acclimated ducklings: uncoupling effect of free fatty acids, Comp. Biochem. Physiol., 244: 343–348.Google Scholar
  8. Barré, H. and Rouanet, J.L., 1983, Calorigenic effect of glucagon and catecholamines in king penguin chicks. Amer. J. Physiol., 244: R758–R763.PubMedGoogle Scholar
  9. Chaffee, R.R.J. and Roberts, J.G., 1971, Temperature acclimation in birds and mammals, Ann. Rev. Physiol., 33: 155–202.CrossRefGoogle Scholar
  10. Depocas, F., and Hart, J.S., 1957, Use of the Pauling oxygen analyzer for measurement of oxygen consumption of animals in open-circuit systems and in a short lag, closed-circuit apparatus, J. Appl. Physiol., 10: 388–392.PubMedGoogle Scholar
  11. Desautels, M. and Himms-Hagen, J., 1979, Roles of noradrenaline and protein synthesis in the cold-induced increase in purine nucleotide binding by brown adipose tissue mitochondria, Can. J. Biochem., 57: 968–976.PubMedCrossRefGoogle Scholar
  12. El Halawani, M.E., Wilson, W.O. and Burger, R.E., 1970, Cold-acclimation and the role of catecholamines in body temperature regulation in male leghorns, Poultry Sci. 49: 621–632.CrossRefGoogle Scholar
  13. Freeman. B.M., 1970, Thermoregulatory mechanisms of the neonate fowl. Comp. Biochem. Physiol., 33: 219–230.CrossRefGoogle Scholar
  14. Hart, J.S., 1962, Seasonal acclimatization in four species of small wild birds, Physiol. Zool., 35: 224–236.Google Scholar
  15. Himms-Hagen, J., 1976, Cellular thermogenesis. Ann. Rev. Physiol. 38: 315–351.CrossRefGoogle Scholar
  16. Hissa, R., Pyörnila, A. and S. Saarela, 1975, Effect of peripheral noradrenaline on the thermoregulation in temperature acclimated pigeon, Comp. Biochem. Physiol., 51C: 243–247.Google Scholar
  17. Jansky, L., 1973, Nonshivering thermogenesis and its thermoregulatory significance. Biol. Rev., 48: 85–132.PubMedCrossRefGoogle Scholar
  18. Krimphove, M., and Opitz, K., 1975. Untersuchungen der calorigenen Wirkung von Glucagon. Arch. Int. Pharmacodyn. Ther. 216: 328–350.PubMedGoogle Scholar
  19. Rintamaki, H., Saarela, S., Marjakangas, A. and Hissa, R., 1983, Summer and winter temperature regulation in the black grouse Lyrurus tetrix, Physiol. Zool., 56(2), 152–159.Google Scholar
  20. Rouanet, J.L., 1983, Arguments morphologiques et fonctionnels en faveur d’une participation du muscle squelettique à la thermogenè se sans frisson chez le caneton acclimaté au froid. Thè se 3è me Cycle, Université Cl. Bernard, Lyon.Google Scholar
  21. Saarela, S., and Vakkuri, O., 1982, Photoperiod-induced changes in temperature metabolism curve, shivering threshold and body temperature in the pigeon, Experientia, 38: 373–374.PubMedCrossRefGoogle Scholar
  22. Steen, J., and Enger, P.S., 1957, Muscular heat production in pigeons during exposure to cold, Amer. J. Physiol., 191: 157–158.PubMedGoogle Scholar
  23. West, G.C., 1965, Shivering and heat production in cold birds, Physiol. Zool., 38: 111–120.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Claude Duchamp
    • 1
  • Hervé Barré
    • 1
  • Didier Delage
    • 1
  • Gilles Berne
    • 1
  • Pierre Brebion
    • 1
  • Jean-Louis Rouanet
    • 1
  1. 1.Lab, Thermorégulation et Energétique de l’exercice C.N.R.S.Lyon cedex 08France

Personalised recommendations