Advertisement

Muscular Nonshivering Thermogenesis in Cold-Acclimated Ducklings

  • Hervé Barré
  • Claude Duchamp
  • Jean-Louis Rouanet
  • André Dittmar
  • Georges Delhomme
Part of the NATO ASI Series book series (ASIAS, volume 173)

Abstract

In small terrestrial mammals, the existence of nonshivering thermogenesis (NST) is fully demonstrated in new-borns, cold-acclimated and hibernating species. The activation of the sympathetic catecholaminergic system by cold or by diet is largely documented. Norepinephrine is considered as the mediator of NST and brown adipose tissue as the major site of this NST.

Keywords

Brown Adipose Tissue White Adipose Tissue Cold Acclimation Gastrocnemius Muscle Black Grouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barré, H. and Rouanet, J.L., 1983. Calorigenic effect of glucagon and catecholamines in king penguin chicks. Am. J. Physiol., 244: R758–R763.PubMedGoogle Scholar
  2. Barré, H., Géloen, A., Chatonnet, J., Dittmar, A. and Rouanet, J.L., 1985. Potentiated muscular thermogenesis in cold-acclimated muscovy duckling. Am. J. Physiol., 249: R533–R538.PubMedGoogle Scholar
  3. Barré, H., Cohen-Adad, F., Duchamp, C. and Rouanet, J.L., 1986a. Multilocular adipocytes from muscovy ducklings differentiated in response to cold aclcimation. J. Physiol. (London), 375: 27–38.PubMedCentralGoogle Scholar
  4. Barré, H., Géloen, A., Mialhe, P. and Rouanet, J.L., 1986b. Effects of glucagon on bird thermogenesis. In “Endocrine regulations as adaptive mechanisms to the environment”, I. Assenmacher and J. Boissin Ed., Editions du CNRS, Paris, pp. 395–401.Google Scholar
  5. Barré, H., Cohen-Adad, F. and Rouanet, J.L., 1987a. Two daily glucagon injections induce nonshivering thermogenesis in muscovy ducklings. Am. J. Physiol., 252: E616–E620.PubMedGoogle Scholar
  6. Barré, H., Bailly, L. and Rouanet, J.L., 1987b. Increased oxidative capacity in skeletal muscles from cold-acclimated ducklings: a comparison with rats. Comp. Biochem. Physiol., 88B: 519–522.Google Scholar
  7. El Halawani, M.E., Wilson, W.O. and Burger, R.E., 1970. Cold acclimation and the role of catecholamines in body temperature regulation in male leghorns. Poultry Sci., 49: 621–632.CrossRefGoogle Scholar
  8. Freeman, B.M., 1970. Thermoregulatory mechanisms of the neonate fowl. Comp. Biochem. Physiol., 33: 219–230.CrossRefGoogle Scholar
  9. Hart, J.S., 1962. Seasonal acclimatization in four species of small wild birds. Physiol. Zool., 35: 224–236.Google Scholar
  10. Krimphove, M. and Opitz, K., 1975. Untersuchungen der calorigenen Wirkung von Glucagon. Arch. Intern. Pharmacodyn., 216: 328–350.Google Scholar
  11. Rintamäki, H., Saarela, S., Marjakangas, A. and Hissa, R., 1983. Summer and winter temperature regulation in the black grouse Lyrurus tetrix. Physiol. Zool., 56(2): 152–159.Google Scholar
  12. Saarela, S. and Vakkuri, O., 1982. Photoperiod-induced changes in temperature metabolism curve, shivering threshold and body temperature in the pigeon. Experientia, 38: 373–374.PubMedCrossRefGoogle Scholar
  13. Steen, J. and Enger, P.S., 1957. Muscular heat production in pigeons during exposure to cold. Am. J. Physiol., 191: 157–158.PubMedGoogle Scholar
  14. West, G.C., 1965. Shivering and heat production in wild birds. Physiol. Zool., 38: 111–120.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Hervé Barré
    • 1
  • Claude Duchamp
    • 1
  • Jean-Louis Rouanet
    • 1
  • André Dittmar
    • 1
  • Georges Delhomme
    • 1
  1. 1.Lab. Thermorégulation et Energétique de l’exercice C.N.R.S.Lyon cedex 08France

Personalised recommendations