Strategies of Homeothermy in Eider Ducklings (Somateria Mollissima)

  • Johan B. Steen
  • Hans Grav
  • Berit Borch-Iohnsen
  • Geir W. Gabrielsen
Part of the NATO ASI Series book series (ASIAS, volume 173)


While most nest-dwelling birds depend on parental brooding to maintain normal body temperature(TB) during the first days of life (Riclefs, 1974), nest-fleers appear to rely on endogenous heat (Koskimies and Lahti,1964). We have studied eider ducklings breeding near the Research Station of The Norwegian Polar Institute at Ny Ålesund, Svalbard (79° 55′). The young eiders leave the nest once they have dried at the age of 6–8 hours and from then on spend most of their time on the ice-strewn water.


Brown Adipose Tissue Heat Production Endogenous Heat Numerous Lipid Droplet Parental Brooding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akester, A. R. 1971. The Blood vascular system. In: “Physiology and biochemistry of the domestic fowl”. O. J. Bell and B. M. Freman, eds. Acad. Press N. Y., LondonGoogle Scholar
  2. Aulie, A. and Grav H. J. 1979. Effect of cold acclimation on oxidative capacity of skeletal muscles and liver in young bantam chicks. Comp. Biochem. Physiol. 62A: 335–338.CrossRefGoogle Scholar
  3. Barre, H., Geloen, A., Chatonnet, J., Dittmar, A. and Rouanet, J. L. 1985. Potentiated muscular thermogenesis in cold-acclimated muscovy ducklings. Am. J. Physiol. 249: (Reg. Int. Comp. Physiol. 18:) R533–R538.PubMedGoogle Scholar
  4. Barre, H., Nedergaard, J. and Cannon, B. 1986. Increased respiration in skeletal muscle mitochondria from cold-acclimated muscovy ducklings: Uncoupling effects of free fatty acids. Comp. Biochem. Physiol. 85B: 343–348.Google Scholar
  5. Barre, H., Bailly, L. and Rouanet, J. L. 1987. Increased oxidative capacity in skeletal muscles from cold-acclimated ducklings: Comparison with rats. Comp. Biochem. Physiol. 88B: 519–522.Google Scholar
  6. Grav, H. J. and Blix: A. S. 1979. A source of nonshivering thermogenesis in für seal skeletal muscle. Science 204: 87–89.PubMedCrossRefGoogle Scholar
  7. Grav, H. J., Borch-Ionsen, B., Dahl, H. A., Gabrielsen, G. W. and Steen, J. B. (submitted J. Comp. Physiol. B).Google Scholar
  8. Koskimes, J. and Lathi, L. 1964. Cold-hardiness of the newly hatched young in relation to ecology and distribution in ten species of European ducks. Auck. 81: 281–307.Google Scholar
  9. Ricklefs, R. E. 1974. Energetics of reproduction in birds. In: “Avian energetics”. R. A. Paynter, ed. Nuthall Orith. Club. Publ. 15.Google Scholar
  10. Scholander, P. F. 1949. Volumetric respircmeter for aquatic animals. Rev. Scient. Instr. 20: 885–887.CrossRefGoogle Scholar
  11. Skulachev, V. P., Maslov, S. P., Sivkova, V. G., Kalinichenko, L. P. and Maslova, G. M. 1963. Uncoupling of oxidation from phosphorylation in muscles of cold-adapted white mice. Biochemistry (Bidkhimya) 28: 54–60.Google Scholar
  12. Steen, J. B. and Gabrielsen, G. W. 1986. Thermogenesis in newly hatched eider (Scmateria mollissima) and long-tailed (Clangula hyemalis) ducklings and barnacle (Branta leuoopsis) goslings. Polar Res. 4: 181–188.CrossRefGoogle Scholar
  13. Steen, J. B. and Gabrielsen, G. W. 1988. The development of hcmeothermy in common eider ducklings (Scmateria mollissima), Acta Physiol. Scand. 132: 557–561.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Johan B. Steen
    • 1
  • Hans Grav
    • 2
  • Berit Borch-Iohnsen
    • 2
  • Geir W. Gabrielsen
    • 3
  1. 1.Dept. of Gen. Physiol.Univ of OsloOslo 3Norway
  2. 2.Dep. NutritionUniv. of OsloOslo 3Norway
  3. 3.Norwegian Polar Research Inst.Oslo LufthavnNorway

Personalised recommendations