Energetics of Avian Growth: The Causal Link with BMR and Metabolic Scope

  • Rudolf Drent
  • Marcel Klaassen
Part of the NATO ASI Series book series (ASIAS, volume 173)


Our point of departure is Lack’s (1968) viewpoint that avian growth rate is one of the parameters adjusted in the course of evolution to help match the needs of the brood to the foraging ability of the parents in nidicolous species. A second selective pressure, valid especially for nidifugous species, is to minimize the period of heightened predation risk when the chicks are small and cannot yet fly. Furthermore, Lack reasoned that the seasonal timing of growth required synchrony, between the period of maximal demand of the growing young and the period of greatest food abundance. A further selective pressure for rapid growth rate might be expected in strongly seasonal environments where it is imperative to complete development before the onset of unfavourable conditions. These considerations are based on the premise that changes in growth rate bring about large changes in the daily ration required to raise the chick, i. e. the energetic consequences of alteration of growth rate loom large in the daily energy budget.


Basal Metabolic Rate Common Tern Metabolic Scope Falco Tinnunculus Growth Rate Deviation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Ackerman, R. A., Whittow, G. C., Paganelli, C. V., and Pettit, T. N., 1980, Oxygen consumption, gas exchange and growth of embryonic wedge-tailed shearwaters (Puffinus pacificus chlororhynchus), Physiol. Zool., 53: 210–221.Google Scholar
  2. Ashmole, N. P., 1963, The biology of the wideawake or sooty tern Sterna fuscata on Ascension Island, Ibis, 103b: 297–364.CrossRefGoogle Scholar
  3. 2.
    Bech, C., Brent, R., Pederson, P. F., Rasmussen, J. G., and Johansen, K., 1982, Temperature regulation in chicks of the manx shearwater (Puffinus puffinus). Ornis Scand., 13: 206–210.CrossRefGoogle Scholar
  4. 3.
    Bech, C., Martini, S., Brent, R., and Rasmussen, J., 1984, Thermoregulation in newly hatched black-legged kittiwakes, Condor, 86: 339–341.CrossRefGoogle Scholar
  5. 4.
    Bech, C., Mehlum, F., and Haftorn, S., 1988, Development of chicks during extreme cold conditions: the antarctic petrel (Thallassoica antarctica), Proc. Ornithol. Congr. 1986.Google Scholar
  6. Bryant, D. M., and Hails, C. J., 1983, Energetics and growth patterns of three tropical bird species, Auk, 100: 425–439.Google Scholar
  7. Daan, S., Masman, D., Strijkstra, A., and Verhulst, S., 1989, Intraspecific allometry of basal metabolic rate: relations with body size, temperature, composition and circadian phase in the kestrel, Falco tinnunculus:, J. Biol. Rhythms., (in press).Google Scholar
  8. 5.
    Dawson, W. R., Bennett, A. F., and Hudson, W. J., 1976, Metabolism and thermoregulation in hatchling ring-billed gulls, Condor, 78: 49–60.CrossRefGoogle Scholar
  9. 6.
    Dawson, W. R., and Bennet, A. F., 1980, metabolism and thermoregulation in hatchling western gulls (Larus occidentalis livens), Condor, 82: 103–105.CrossRefGoogle Scholar
  10. 7.
    Dawson, W. R., Hudson, J. W., and Hill, R. W., 1972, Temperature regulation in newly hatched laughing gulls (Larus atricilla), Condor, 74: 177–184.CrossRefGoogle Scholar
  11. Dorward, D. F., 1963, The fairy tern Gygis alba on Ascension Island, Ibis, 103b: 365–378.CrossRefGoogle Scholar
  12. 8.
    Drent, R. H., 1970, Functional aspects of incubation in the herring gull (Larus argentatus Pont.), Behaviour suppl., 17: 1–132.Google Scholar
  13. Drent, R. H., 1975, Incubation, Pp. 333–420, in: “Avian Biology,” Vol. V, D. S. Farner, and J. R. King, eds., Academic Press, New York.CrossRefGoogle Scholar
  14. Drent, R. H., and Daan, S., 1980, The prudent parent: energetic adjustments in avian breeding, Ardea, 68: 225–252.Google Scholar
  15. Ellis, H. I., 1984, Energetics of free ranging seabirds, Pp 203–234, in: “Seabird Energetics,” G. C. Whittow, and H. Rahn, eds., Plenum Press, New York and London.CrossRefGoogle Scholar
  16. Gabrielsen, G. W., Mehlum, F., and Karlsen, H. E., 1988, Thermoregulation in four species of arctic seabirds, J. Comp. Physiol. B, 157: 703–708.CrossRefGoogle Scholar
  17. Glutz von Blotzheim, U. N., and Bauer, K. M., 1982, Handbuch der Vögel Mitteleuropas, 8: I: 1–699, Akad. Verlag, Wiesbaden.Google Scholar
  18. Hails, C. J., 1983, The metabolic rate of tropical birds, Condor 85: 61–65.CrossRefGoogle Scholar
  19. Hume, I. D., 1982, Digestive Physiology and Nutrition of Marsupials, Cambridge Univ. Press.Google Scholar
  20. Kirkwood, J. K., 1983, A limit to metabolisable energy intake in mammals and birds, Comp. Biochem. Physiol., 75A: 1–3.CrossRefGoogle Scholar
  21. 9.
    Klaassen, M., Slagsvold, G., and Bech, C., 1987, Metabolic rate and thermostability in relation to availability of yolk in hatchlings of black-legged kittiwake and domestic chicken, Auk, 104: 787–789.Google Scholar
  22. Lack, D., 1968, Ecological Adaptations for Breeding in Birds, Methuen, London.Google Scholar
  23. Langham, N. P., 1983, growth strategies in marine terns, Stud. Avian Biol., 8: 73–83.Google Scholar
  24. Mehlum, F., Bech, C., and Haftorn, S., 1987, Breeding ecology of the antarctic petrel Thalassoica antarctica in Mühlighofmannfjella, Dronning Maud Land, Proc. NIPR Symp. Polar Biol., 1: 161–165.Google Scholar
  25. Nelson, J. B., 1978, The Sulidae, Gannets and Boobies, Oxford Univ. Press.Google Scholar
  26. O’Connor, R. J., 1984, The Growth and Development of Birds, John Wiley, New York.Google Scholar
  27. 10.
    Palokangas, R., and Hissa, R., 1971, Thermoregulation in young black-headed gulls (Larus ridibundus L.), Comp. Biochem. Physiol., 38A: 743–750.CrossRefGoogle Scholar
  28. 11.
    Pettit, T. N., Grant, G. S., Whittow, G. C., Rahn, H., and Paganelli, C. V., 1981, Respiratory gas exchange and growth of white tern embryos, Condor, 83: 355–361.CrossRefGoogle Scholar
  29. 12.
    Pettit, T. N., Grant, G. S., Whittow, G. C., Rahn, H., and Paganelli, C. V., 1982, Embryonic oxygen consumption and growth of the laysan and black-footed albatross, Am. Journ. Physiol. 242: R121–R128.Google Scholar
  30. 13.
    Pettit, T. N., Grant, G. S., Whittow, G. C., Rahn, H., and Paganelli, C. V., 1982, Respiratory gas exchange and growth of bonin petrel embryos, Physiol. Zool., 55: 162–170.Google Scholar
  31. 14.
    Pettit, T. N., and Whittow, G. C., 1983, Embryonic respiration and growth in two species of noddy terns, Physiol. Zool., 56: 455–464.Google Scholar
  32. Pettit, T. N., Whittow, G. C., and Ellis, H. I., 1984, Food and energy requirements of seabirds at french frigate shoals, Hawaii, Pp 265-282, in: Proc. 2nd Symp. Res. Inv., R. W. Grigg, and K. Y. Tanoue, eds., Univ. Hawaii, Honolulu.Google Scholar
  33. Ricklefs, R. E., 1968, Patterns of growth in birds, Ibis, 110: 419–451.CrossRefGoogle Scholar
  34. Ricklefs, R. E., 1973, Patterns of growth in birds II. Growth rate and mode of development, Ibis, 115: 177–201.CrossRefGoogle Scholar
  35. Ricklefs, R. E., 1983, Avian Post-Natal Development, Pp 1–83, in: “Avian Biology,” Vol. VII, D. S. Farner, and J. R. King, eds., Academic Press, New York.CrossRefGoogle Scholar
  36. Ricklefs, R. E., 1987, Comparative analysis of avian embryonic growth, J. Exp. Zool. Suppl., 1: 309–323.PubMedGoogle Scholar
  37. 15.
    Ricklefs, R. E., and White, S. C., 1981, Growth and energetics of chicks of the sooty tern (Sterna fuscata) and common tern (S. hirundo), Auk, 98: 361–378.Google Scholar
  38. Schreiber, E. A., and Schreiber, R. W., 1980, Breeding biology of laughing gulls in Florida, J. Field Orn. 51: 340–355.Google Scholar
  39. Spaans, A. L., 1971, On the feeding ecology of the herring gull in the northern part of the Netherlands, Ardea, 59: 73–188.Google Scholar
  40. Taylor, J. R. E., 1985, Ontogeny of thermoregulation and energy metabolism in pygoscelid penguin chicks, J. Comp. Physiol., 155B: 615–627.CrossRefGoogle Scholar
  41. 16.
    Visser and Beintema, 1989, Energetics of growth in waders, Ardea, 77: (in press).Google Scholar
  42. Weathers, W. W., 1979, Climatic adaptations in avian standard metabolic rate, Oecologia (Berlin) 42: 81–89.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Rudolf Drent
    • 1
  • Marcel Klaassen
    • 1
    • 2
  1. 1.Zoological LaboratoryUniversity of GroningenHarenThe Netherlands
  2. 2.Research Institute for Nature Management (RIN)ArnhemThe Netherlands

Personalised recommendations