Energy Partitioning in Arctic Tern Chicks (Sterna paradisaea) and Possible Metabolic Adaptations in high Latitude Chicks

  • Marcel Klaassen
  • Claus Bech
  • Dirkjan Masman
  • Guri Slagsvold
Part of the NATO ASI Series book series (ASIAS, volume 173)


In order to survive and grow, neonates need to remain homeothermic. However, in the arctic, which is mostly regarded as a harsh environment with prevailing low ambient temperatures, achievement of homeothermy for chicks might cause problems. The small neonates have, besides an unfavorable volume area ratio, a less well developed plumage than adult birds. Therefore one might hypothesize that if no special cold adaptations have evolved, total energy expenditure of free living chicks is dominated by the costs of thermoregulation. Many physiologists working in extreme environments have focused on the ability of chicks to cope with low environmental temperatures (e. g. Maher, 1964; Norton, 1973; Aulie and Steen, 1976; Boggs et al., 1977; Pedersen and Steen, 1979; Bech et al., 1984; Jørgensen and Blix, 1985; Taylor, 1985; Boersma, 1986). However, to evaluate the importance of any adaptation to cold one needs to measure the actual contribution of thermoregulatory expenses to the total requirements of free living chicks. So far precise quantifications of the thermoregulatory costs in free living chicks in polar environments are only available for arctic tern chicks (Sterna paradisaea), studied on Spitsbergen (79 °N, 12 °W; Klaassen et al., 1989a,b), which are summarized here, after an analysis of possible metabolic adaptations in chicks to climatic conditions in general.


Total Energy Expenditure Basal Metabolic Rate Adult Bird Standard Metabolic Rate Common Tern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aschoff, J., and Pohl, H., 1970, Der Ruheumsatz von Vögeln als funktion der Tageszeit und der Körpergrösse, J. Orn. 111: 38.CrossRefGoogle Scholar
  2. Aulie, A., and Steen, J. B., 1976, Thermoregulation and muscular development in cold exposed willow ptarmigan chicks (Lagopus lagopus L.), Comp. Biochem. Physiol., 55A: 291.CrossRefGoogle Scholar
  3. Bech, C., Martini, S., Brent, R., and Rasmussen, J., 1984, Thermoregulation in newly hatched black-legged kittiwakes, Condor, 86: 339.CrossRefGoogle Scholar
  4. Boersma, P. D., 1986, Body temperature, torpor, and growth in chicks of fork-tailed storm-petrels (Oceanodroma furcata), Physiol. Zool., 59: 10.Google Scholar
  5. Busse, K., 1983, Untersuchungen zum Ehe-und Sozialleben der Küstenseeschwalbe (Sterna paradisaea PONT.) mit besonderer berüksichtigung des lang zeitlichen Wandels der individuellen Beziehungen, Ecol. Birds 5: 73.Google Scholar
  6. Calder, W. A., Jr., and King, J. R., 1974, Thermal and caloric relations of Birds, in: “Avian Biology, Vol. IV,” D. S. Farner, and J. R. King, eds., Academic Press, New York and London.Google Scholar
  7. Daan, S., Masman, D., Strijkstra, A., and Verhulst, S., 1989, Intraspecific allometry of basal metabolic rate: relations with body size, temperature, composition and circadian phase in the kestrel, Falco tinnunculus:, J. Biol. Rhythms., (in press).Google Scholar
  8. Drent, R. H., Ebbinge, B., and Weijand, B., 1978, Balancing the energy budgets of arctic-breeding geese throughout the annual cycle: a progress report, Verh. orn. Ges. Bayern 23: 239.Google Scholar
  9. Drent, R. H., and Daan, S., 1980, The prudent parent: energetic adjustments in avian breeding, Ardea, 68: 225.Google Scholar
  10. Ellis, H. I., 1984, Energetics of free ranging seabirds, in: “Seabird Energetics,” G. C. Whittow, and H. Rahn, eds., Plenum Press, New York and London.Google Scholar
  11. Hails, C. J., 1983, The metabolic rate of tropical birds, Condor 85: 61.CrossRefGoogle Scholar
  12. Jørgensen, E., and Blix, A. S., 1985, Is the rate of body cooling in cold exposed neonatal willow ptarmigan chicks a regulated process?, Acta Physiol. Scand. 124: 404.Google Scholar
  13. Kersten, M., and Piersma, T., 1987, High levels of energy expenditure in shorebirds; metabolic adaptations to an energetically expensive way of life, Ardea, 75: 175.Google Scholar
  14. King, J. R., 1974, Seasonal allocation of time and energy resources in birds, in: “Avian Energetics,” R. A. Paynter, Jr., ed., Cambridge, Massachusetts, Nuttall Ornithol. Club.Google Scholar
  15. Klaassen, M., Bech, C., Masman, D., and Slagsvold, G., 1989a, Growth and energetics of arctic tern chicks (Sterna paradisaea), Auk, 106: (in press).Google Scholar
  16. Klaassen, M., Bech, C., and Slagsvold, G., 1989b, Basal matabolic rate and thermal conductance in arctic tern chicks and the effect of heat increment of feeding on thermoregulatory expenses, (in prep.).Google Scholar
  17. Lasiewski, R. C., and Dawson, W. R., 1967, A reexamination of the relation between standard metabolic rate and body weight in birds, Condor 69: 13.CrossRefGoogle Scholar
  18. Lifson, N., and McClintock, R., 1966, Theory of use of the turnover rates of body water for measuring energy and material balance, J. Theor. Biol., 12: 46.PubMedCrossRefGoogle Scholar
  19. Lustick, S., Battersby, B., and Kelty, M., 1978, Behavioral thermoregulation: orientation toward the sun in herring gulls, Science, 200: 81.CrossRefGoogle Scholar
  20. Lustick, S., 1984, Thermoregulation in adult seabirds, in: “Seabird Energetics,” G. C. Whittow, and H. Rahn, eds., Plenum Press, New York and London.Google Scholar
  21. Maher, W. J., 1964, Growth rate and development of endothermy in the snow bunting (Plectrophenax nivalis) and lapland longspur (Calcarius lapponicus) at Barrow Alaska, Ecology, 45: 520.CrossRefGoogle Scholar
  22. Nagy, K. A., 1980, CO2 production in animals: analysis of potential errors in the doubly labeled water method, Amer. J. Physiol., 238: R466.PubMedGoogle Scholar
  23. Nice, M. M. 1962, Development of behavior in precocial birds, Trans. Linn. Soc. New York 8: 1.Google Scholar
  24. Norton, D. W., 1973, Ecological energetics of calidridine sandpipers breeding in Northern Alaska, Piss. Univ. Alaska, Fairbanks Alaska.Google Scholar
  25. Pedersen, H. C., and Steen, J. B., 1979, Behavioural thermoregulation in willow ptarmigan chicks (Lagopus lagopus), Ornis Scand., 10: 17.CrossRefGoogle Scholar
  26. Ricklefs, R. E., 1974, Energetics of reproduction in birds, in: “Avian Energetics,” R. A. Paynter, Jr., ed., Cambridge, Massachusetts, Nuttall Ornithol. Club.Google Scholar
  27. Ricklefs, R. E., and White, S. C., 1981, Growth and energetics of chicks of the sooty tern (Sterna fuscata) and common tern (S. hirundo), Auk, 98: 361.Google Scholar
  28. Stonehouse, B., 1967, The general biology and thermal balance of penguins, in: “Advances in Ecological Research,” J. B. Cragg, ed., Vol. 4, Academic Press, London.Google Scholar
  29. Taylor, J. R. E., 1985, Ontogeny of thermoregulation and energy metabolism in pygoscelid penguin chicks, J. Comp. Physiol., 155B: 615.CrossRefGoogle Scholar
  30. Weathers, W. W., 1979, Climatic adaptations in avian standard metabolic rate, Oecologia (Berlin), 42: 81.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Marcel Klaassen
    • 1
    • 2
  • Claus Bech
    • 2
  • Dirkjan Masman
    • 1
    • 3
  • Guri Slagsvold
    • 2
  1. 1.Zoological LaboratoryUniversity of GroningenHarenThe Netherlands
  2. 2.Department of ZoologyUniversity of TrondheimDragvollNorway
  3. 3.Laboratory of Isotope PhysicsUniversity of GroningenGroningenThe Netherlands

Personalised recommendations