Advertisement

Adaptations to Cold in Bird Chicks

  • Robert E. Ricklefs
Part of the NATO ASI Series book series (ASIAS, volume 173)

Abstract

Adult birds maintain high body temperatures in cold environments by thick insulation (West 1972, Dawson and Carey 1976, Dawson et al. 1983), huddling and communal roosting (Knorr 1957, Mackenzie 1959), use of protected microsites (Kendeigh 1961, Mayer et al. 1982), and high capacity for thermogenesis. Several studies have shown that basal metabolic rate (BMR) increases with latitude (Weathers 1979, Ellis 1984), that temperature tolerances vary seasonally (Barnett 1970) and geographically (Blem 1973) owing to increased insulation as well as thermogenic capacity (Hart 1962, Dawson and Carey 1976, Dawson et al. 1983), particularly shivering thermogenesis of the flight muscles (Hart 1962, West 1965).

Keywords

Basal Metabolic Rate Brood Size House Sparrow Young Chick Emperor Penguin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aulie, A., 1976, The pectoral muscles and the development of thermoregulation in chicks of willow ptarmigan (Lagopus lagopus), Comp. Biochem. Physiol., 53A: 343.CrossRefGoogle Scholar
  2. Aulie, A., and Moen P., 1975, Metabolic thermoregulatory responses in eggs and chicks of willow ptarmigan (Lagopus lagopus), Comp. Biochem. Phvsiol., 51A: 605.CrossRefGoogle Scholar
  3. Austin, G. T., 1974, Nesting success of the cactus wren in relation to nest orientation, Condor, 76: 32.CrossRefGoogle Scholar
  4. Bakken, G. S., 1976, A heat transfer analysis of animals: unifying concepts and the application of metabolism chamber data to field ecology, J. Theor. Biol., 60: 337.PubMedCrossRefGoogle Scholar
  5. Bakken, G. S., 1980, The use of standard operative temperature in the study of the thermal energetics of birds, Physiol. Zool., 53: 108.Google Scholar
  6. Barnett, L. B., 1970, Seasonal changes in temperature acclimatization of the house sparrow, Comp. Biochem. Physiol., 33: 559.CrossRefGoogle Scholar
  7. Bartholomew, G. A., Howell, T. R., and Cade, T. J., 1957, Torpidity in the white-throated swift, anna hummingbird, and the poorwill, Condor, 59: 145.CrossRefGoogle Scholar
  8. Bartholomew, G. A., Vleck, C. M., and Bucher, T. L., 1983, Energy metabolism and nocturnal hypothermia in two tropical passerine frugivores, Manacus vitellinus and Pipra mentalis, Physiol. Zool., 56: 370.Google Scholar
  9. Bech, C., Aarvik, F. J., and Vongraven, D., 1987, Temperature regulation in hatchling puffins (Fratercula arctica), J. Ornithol., 128: 163.CrossRefGoogle Scholar
  10. Bech, C., Brent, R., Pederson, P. F., Rasmussen, J. G., and Johansen, K., 1982, Temperature regulation in chicks of the manx shearwater Puffinus puffinus, Ornis Scand., 13: 206.CrossRefGoogle Scholar
  11. Bech, C., Martin, S., Brent, R., and Rasmussen, J., 1984, Thermoregulation in newly hatched black-legged kittiwakes, Condor, 86: 339.CrossRefGoogle Scholar
  12. Blem, C. R., 1973, Geographic variation in the bioenergetics of the house sparrow, Ornithol. Monogr., 14: 96.CrossRefGoogle Scholar
  13. Boersma, P. D., 1986, Body temperature, torpor, and growth in chicks of fork-tailed storm-petrels (Oceanodroma furcata), Physiol. Zool., 57: 10.Google Scholar
  14. Booth, D. T., 1984, Thermoregulation in neonate mallee fowl Leipoa ocellata, Phvsiol. Zool., 57: 251.Google Scholar
  15. Booth, D. T., 1985, Thermoregulation in neonate brush turkeys (Alectura lathami), Phvsiol. Zool., 58: 374.Google Scholar
  16. Bucher, T. L., and Worthington, A., 1982, Nocturnal hypothermia and oxygen consumption in manakins, Condor, 84: 327.CrossRefGoogle Scholar
  17. Calder, W. A., 1971, Temperature relationships and nesting of calliope hummingbird, Condor, 73: 314.CrossRefGoogle Scholar
  18. Calder, W. A., 1973, Microhabitat selection during nesting of hummingbirds in the Rocky Mountains, Ecology, 54: 127.CrossRefGoogle Scholar
  19. Chappell, M. A., 1980, Thermal energetics of chicks of arctic-breeding shorebirds, Comp. Biochem. Physiol., 65A: 311.CrossRefGoogle Scholar
  20. Clark, L., 1982, The development of effective homeothermy and endothermy by nestling starlings, Comp. Biochem. Physiol., 73A: 253.CrossRefGoogle Scholar
  21. Clark, L., and Balda, R. P., 1981, The development of effective endothermy and homeothermy by nestling pinon jays, Auk, 98: 615.Google Scholar
  22. Dawson, W. R., and Bennett, A. F., 1981, Field and laboratory studies of the thermal relations of hatchling western gulls, Physiol. Zool., 54: 155.Google Scholar
  23. Dawson, W. R., and Carey, C., 1976, Seasonal acclimitization to temperature in cardueline finches. I. Insulative and metabolic adjustments, J. Comp. Phvsiol., 112: 317.CrossRefGoogle Scholar
  24. Dawson, W. R., Marsh, R. L., Buttemer, W. A., and Carey C., 1983, Seasonal and geographic variation of cold resistance in house finches, Phvsiol. Zool., 56: 353.Google Scholar
  25. Drent, R. H., 1965, Breeding biology of the pigeon guillemot, Cepphus grylle, Ardea, 53: 99.Google Scholar
  26. Dunn, E. H., 1976, The relationship between brood size and age of effective homeothermy in nestling house wrens, Wilson Bull., 88: 478.Google Scholar
  27. Ellis, H. I., 1984, Energetics of free-ranging seabirds, in: “Seabird Energetics,” G. C. Whittow and H. Rahn, eds., Plenum Press, New York.Google Scholar
  28. Eppley, Z. A., 1984, Development of thermoregulatory abilities in Xantus’ murrelet chicks Synthliboramphus hvpoleucus, Physiol. Zool., 57: 307.Google Scholar
  29. Gates, D. M., 1980, “Biophysical Ecology,” Springer-Verlag, New York.Google Scholar
  30. Haftorn, S., 1972, Hypothermia of arctic tits in winter, Ornis Scand., 3: 153.CrossRefGoogle Scholar
  31. Hainsworth, F. R., and Wolf, L. L., 1970, Regulation of oxygen consumption and body temperature during torpor in a hummingbird, Eulampis iugularis, Science, 168: 368.PubMedCrossRefGoogle Scholar
  32. Hainsworth, F. R., and Wolf, L. L., 1978, The economics of temperature and torpor in nonmammalian organisms, in: “Strategies in Cold,” L. Wang and J. W. Hudson, eds., Academic Press, New York.Google Scholar
  33. Hart, J. S., 1962, Seasonal acclimatization in four species of small wild birds, Phvsiol. Zool., 35: 224.Google Scholar
  34. Hissa, R., Saarela, S., Rintamaki, H., Linden, H., and Hohtola, E., 1983, Energetics and development of temperature regulation in capercaillie Tetrao urogallus, Physiol. Zool., 56: 142.Google Scholar
  35. Horvath, O., 1964, Seasonal differences in rufous hummingbird nest height and their relation to nest climate, Ecology, 45: 235.CrossRefGoogle Scholar
  36. Jorgensen, E., and Blix, A. S., 1985, Effects of climate and nutrition on growth and survival of willow ptarmigan chicks, Ornis Scand., 16: 99.CrossRefGoogle Scholar
  37. Kendeigh, S. C., 1961, Energy of birds conserved by roosting in cavities, Wilson Bull., 73: 140.Google Scholar
  38. Knorr, O. A., 1957, Communal roosting of the pygmy nuthatch, Condor, 59: 398.CrossRefGoogle Scholar
  39. Koskimies, J., 1948, On temperature regulation and metabolism in the swift, Micropus a. apus L., during fasting, Experientia, 4: 274.PubMedCrossRefGoogle Scholar
  40. Koskimies, J., and Lahti, L., 1964, Cold-hardiness of the newly hatched young in relation to ecology and distribution in ten species of European ducks, Auk, 81: 281.CrossRefGoogle Scholar
  41. Le Maho, Y., 1977, The emperor penguin: a strategy to live and breed in the cold, Amer. Sci., 65: 680.Google Scholar
  42. Mackenzie, J. M. D., 1959, Roosting of treecreepers, Bird Study, 6: 8.CrossRefGoogle Scholar
  43. Mayer, L., Lustick, S., and Battersby, B., 1982, The importance of cavity roosting and hypothermia to energy balance of the winter acclimatized Carolina chickadee, Int. J. Biometeorol., 26: 231.CrossRefGoogle Scholar
  44. Mertens, J. A. L., 1969, The influence of brood size on the energy metabolism and water loss of nestling great tits Parus major major, Ibis, 111: 11.CrossRefGoogle Scholar
  45. Myhre, K., and Steen, J. B., 1979, Body temperature and aspects of behavioural temperature regulation in some neonate subarctic and arctic birds, Ornis Scand., 10: 1.CrossRefGoogle Scholar
  46. Nice, M. M., 1962, Development of behavior in precocial birds, Trans. Linn. Soc. N. Y., 8: 1.Google Scholar
  47. Nir, I., Shapira, N., Nitsan, A., and Dror, Y., 1974, Force-feeding effects on growth, carcass and blood composition in the young chick, Br. J. Nutr., 32: 229.PubMedCrossRefGoogle Scholar
  48. Nir, I., Nitsan, Z., Dror, Y., and Shapira, N., 1978, Influence of overfeeding on growth, obesity and intestinal tract in young chicks of light and heavy breeds, Br. J. Nutr., 39: 27.PubMedCrossRefGoogle Scholar
  49. O’Connor, R. J., 1975, The influence of brood size upon metabolic rate and body temperature in nestling blue tits Parus caeruleus and house sparrows Passer domesticus, J. Zool., 175: 391.CrossRefGoogle Scholar
  50. Osbaldiston, G. W., 1966, The response of the immature chicken to ambient temperature, in: “Physiology of the Domestic Fowl,” C. Horton-Smith and E. C. Amoroso, eds., Oliver & Boyd, Edinburgh and London.Google Scholar
  51. Remmert, H., 1980, “Arctic Animal Ecology,” Springer-Verlag, Berlin.CrossRefGoogle Scholar
  52. Ricklefs, R. E., 1979a, Patterns of growth in birds. V. A comparative study of development in the starling, common tern, and japanese quail, Auk., 96: 10.Google Scholar
  53. Ricklefs, R. E., 1979b, Adaptation, constraint, and compromise in avian postnatal development, Biol. Rev., 54: 269.PubMedCrossRefGoogle Scholar
  54. Ricklefs, R. E., 1982, Development of homeothermy in antarctic seabirds, Antarctic J. 1982 Rev.: 177.Google Scholar
  55. Ricklefs, R. E., 1983, Avian postnatal development, Avian Biol., 7: 1.CrossRefGoogle Scholar
  56. Ricklefs, R. E., and Hainsworth, F. R., 1969, Temperature regulation in nestling cactus wrens: the nest environment, Condor, 71: 32.CrossRefGoogle Scholar
  57. Ricklefs, R. E., and Roby, D. D., 1983, Development of homeothermy in the diving petrels Pelecanoides urinatrix exsul and P. georgicus, and the antarctic prion Pachyptila desolata, Comp. Biochem. Physiol., 75A: 307.CrossRefGoogle Scholar
  58. Ricklefs, R. E., White, S. C., and Cullen, J., 1980, Energetics of postnatal growth in Leach’s storm-petrel, Auk, 97: 566.Google Scholar
  59. Scholander, P. F., Walters, V., Hock, R., and Irving, L., 1950, Body insulation of some arctic and tropical mammals and birds, Biol. Bull., 99: 225.PubMedCrossRefGoogle Scholar
  60. Skowron, C., and Kern, M., 1980, The insulation in nests of selected North American songbirds, Auk, 97: 816.Google Scholar
  61. Spiers, D. E., Adams, T., and Ringer, R. K., 1985, Homeothermic development in the bobwhite (Colinus virginianus), Comp. Biochem. Physiol., 81A: 921.CrossRefGoogle Scholar
  62. Stoddard, H. L., 1931, “The Bobwhite Quail,” Charles Scribner’s Sons, New York.Google Scholar
  63. Taylor, J. R. E., 1986, Thermal insulation of the down and feathers of pygoscelid penguin chicks and the unique properties of penguin feathers, Auk, 103: 160.Google Scholar
  64. Tiainen, J., Hanski, I. K., and Mehtala, J., 1983, Insulation of nests and the northern limits of three Phvlloscopus warblers in Finland. Ornis Scand., 14: 149.CrossRefGoogle Scholar
  65. Walsberg, G. E., and King, J. R., 1978, The energetic consequences of incubation for two passerine species, Auk, 95: 644.Google Scholar
  66. Weathers, W. W., 1979, Climate adaptation in avian standard metabolic rate, Oecologia, 42: 81.Google Scholar
  67. Webb, D. R., and King, J. R., 1983, An analysis of the heat budgets of the eggs and nest of the white-crowned sparrow, Zonotrichia leucophrys, in relation to parental attentiveness, Physiol. Zool., 56: 493.Google Scholar
  68. Webb, D. R., and King, J. R., 1983, Heat transfer relations of avian nestlings, J. Thermal Biol., 8: 301.CrossRefGoogle Scholar
  69. West, G. C., 1965, Shivering and heat production in wild birds, Physiol. Zool., 38: 111.Google Scholar
  70. West, G. C., 1972, Seasonal differences in resting metabolic rate of Alaskan ptarmigan, Comp. Biochem. Phvsiol., 42A: 867.CrossRefGoogle Scholar
  71. West, G. C., and Norton, D. W., 1975, Metabolic adaptations of tundra birds, in: “Physiological Adaptations to the Environment,” F. J. Vernberg, ed., Intext Educ. Publ., New York.Google Scholar
  72. Yarbrough, C.G., 1970, The development of endothermy in nestling graycrowned rosy finches, Leucosticte tephrocotis griseonucha, Comp. Biochem. Phvsiol., 34: 917.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Robert E. Ricklefs
    • 1
  1. 1.Department of BiologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations