Energy Saving during Breeding and Molt in Birds

  • Jean-Patrice Robin
  • Yves Handrich
  • Yves Cherel
  • Yvon Le Maho
Part of the NATO ASI Series book series (ASIAS, volume 173)


Success of birds in breeding and molt obviously implies adequate availability in either food or body fuel reserves. However, due to conflicting requirements, a limit in these energetic conditions for success may be reached. For example, following an impairment of climatic conditions, availability of food may be reduced while the decrease in the body fuel reserves of the breeders is accelerated. In the same time, increased foraging by the breeders may be limited due to protection of eggs or chicks from cold or predation (Calder and Booser, 1973; Milne, 1976; Aldrich and Raveling, 1983). Molt may also bring birds into a near marginal energetic condition, particularly in those species which simultaneously replace all their feathers. Ability for foraging may be impaired while there are higher energetic demands due to decreased thermal insulation and building of new plumage (Groscolas, 1978).


Basal Metabolic Rate Body Protein King Penguin Canada Goose Emperor Penguin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldrich, T. w., and Raveling, D.G., 1983, Effects of experience and body weight on incubation behavior of Canada geese, Auk, 100: 670.Google Scholar
  2. Ankney, C.D., and Maclnnes, C.D., 1978, Nutrient reserves and reproductive performance of female lesser snow geese, Auk, 95: 459.Google Scholar
  3. Budd, G.M., 1962, Population studies in rookeries of the emperor penguin Aptenodytes forsteri, Proc. Zool. Soc. London, 139: 365.CrossRefGoogle Scholar
  4. Calder, W.A., and Booser, J., 1973, Hypothermia of broad-tailed hummingbirds during incubation in nature with ecological correlations, Science, 180: 751.PubMedCrossRefGoogle Scholar
  5. Cherel, Y., Stahl, J.-C., and Le Maho, Y., 1987, Ecology and physiology of fasting in king penguin chicks, Auk, 104: 254.Google Scholar
  6. Cherel, Y., Leloup, J., and Le Maho, Y., 1988a, Fasting in king penguin. II. Hormonal and metabolic changes during molt, Am. J. Physiol. 254 (Regulatory Integrative Comp. Phvsiol. 23): R178.PubMedGoogle Scholar
  7. Cherel, Y., Robin, J.-P., and Le Maho, Y., 1988b, Physiology and biochemistry of long-term fasting in birds, Can. J. Zool., 66: 159.CrossRefGoogle Scholar
  8. Cherel, Y., Robin, J.-P., Walch, O., Karmann, H., Netchitailo, P. and Le Maho, Y., 1988c, Fasting in king penguin. I. Hormonal and metabolic changes during breeding, Am. J. Phvsiol. 254 (Regulatory Integrative Comp. Physiol. 23): R170.Google Scholar
  9. Dewasmes, G., Buchet, C. and Le Maho, Y., 1989, Sleep changes during fasting in emperor penguins, Am. J. Physiol. (Regulatory Integrative Comp. Physiol.), in press.Google Scholar
  10. Dewasmes, G., Cohen-Adad, F., Koubi, H. and Le Maho, Y., 1984, Sleep changes in long-term fasting geese in relation to lipid and protein metabolism, Am. J. Physiol. 247 (Regulatory Integrative Comp. Phvsiol. 16): R663.PubMedGoogle Scholar
  11. Dewasmes, G., Le Maho, Y., Cornet, A., and Groscolas, R., 1980, Resting metabolic rate and cost of locomotion in long-term fasting emperor penguins. J. Appl. Phvsiol.: Respirat. Environ. Exercise Phvsiol., 49: 888.Google Scholar
  12. Gabrielsen, G.W. and Unander, S., 1987, Energy costs during incubation in Svalbard and Willow Ptarmigan hens, Polar Res., 5n. s.: 59–69.CrossRefGoogle Scholar
  13. Garrow, J.S., Fletcher, K., and Halliday, D., 1965, Body composition in severe infantile malnutrition, J. Clin. Invest., 44: 417.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Gessaman, J.A. and Findell, P.R., 1979, Energy cost of incubation in the American kestrel, Comp. Biochem. Physiol., 63A: 57.CrossRefGoogle Scholar
  15. Gillespie, T.H., 1932, “A Book of King Penguins”, Herbert Jenkins Limited, London.Google Scholar
  16. Grant, G.S. and Whittow G.C., 1983, Metabolic cost of incubation in the Laysan albatross and Bonin petrel, Comp. Biochem. Physiol., 74A: 77–82.CrossRefGoogle Scholar
  17. Groscolas, R., 1978, Study of molt fasting followed by an experimental forced fasting in the emperor penguin Aptenodytes forsteri: Relationship between feather growth, body weight loss, body temperature and plasma fuel levels, Comp. Biochem. Phys., 61A: 287.CrossRefGoogle Scholar
  18. Groscolas, R., 1982, Modifications métaboliques et hormonales en relation avec le jeûne prolongé, la reproduction et la mue chez le Manchot empereur, Thesis, University of Dijon, France.Google Scholar
  19. Groscolas, R., 1986, Changes in body mass, body temperature and plasma fuel levels during the natural breeding fast in male and female emperor penguins Aptenodytes forsteri, J. Comp. Physiol. B, 156: 521.CrossRefGoogle Scholar
  20. Jouventin, P., 1971, Incubation et élevage itinérants chez les manchots empereurs de Pointe Géologie (Terre Adélie), Rev. Comp. Animal, 5: 189.Google Scholar
  21. Jouventin, P., 1978, Ethologie comparée des Sphéniscidés, Thesis, University of Montpellier, France.Google Scholar
  22. King, J.R., 1980, Energetics of avian moult, in: “Acta XVII Congressus Internationalis Ornithologici”, R. Nöhring, ed., Deutsche Ornithologen-Gesellschaft, Berlin.Google Scholar
  23. Korpimäki, E., 1986, Reversed size dimorphism in birds of prey, especially in Tengmalm’s owl Aegolius funereus: a test of the “starvation hypothesis”, Omis Scand., 17: 326.CrossRefGoogle Scholar
  24. Korschgen, C.E., 1977, Breeding stress of female eiders in Maine, J. Wildl. Mgmt., 41: 360.CrossRefGoogle Scholar
  25. Krüger, K., Prinzinger, R., and Schuchmann, K.-L., 1982, Torpor and metabolism in hummingbirds, Comp. Biochem. Physiol., 73A: 679.CrossRefGoogle Scholar
  26. Le Maho, Y., 1983a, Metabolic adaptations to long-term fasting in antarctic penguins and domestic geese, J. therm. Biol., 8: 91.CrossRefGoogle Scholar
  27. Le Maho, Y., 1983b, Le manchot empereur: une stratégie basée sur l’économie d’énergie, Le Courrier du CNRS, 50: 15.Google Scholar
  28. Le Maho, Y., Delclitte, P., and Chatonnet, J., 1976, Thermoregulation in fasting emperor penguins under natural conditions, Am. J. Physiol., 231: 913.PubMedGoogle Scholar
  29. Le Maho, Y., Robin, J.-P., and Cherel, Y., 1987, The metabolic features of starvation, in: “Comparative Physiology of Environmental Adaptations”, vol. 2, P. Dejours, ed., Karger, Basel.Google Scholar
  30. Le Maho, Y., Robin, J.-P., and Cherel, Y., 1988, Starvation as a treatment for obesity: The need to conserve body protein, NIPS, 3: 21.Google Scholar
  31. Lyman, C.P., 1982, Who is who among the hibernators, in: “Hibernation and Torpor in Mammals and Birds”, C.P. Lyman, J.S. Willis, A. Malan, and L.C.H. Wang, ed., Academic Press, New York.Google Scholar
  32. Mainguy, S.K., and Thomas, V.G., 1985, Comparisons of body reserve buildup and use in several groups of Canada geese, Can. J. Zool., 63: 1765.CrossRefGoogle Scholar
  33. Masman, D., 1986, The annual cycle of the kestrel Falco tinnunculus. A study in behavioral energetics. Ph.D. Thesis, Rijksuniversiteit Groningen, Drukkerij Van Denderen, B.V. Groningen.Google Scholar
  34. Masman, D., Daan, S., and Beldhuis, H.J.A., 1988a, Ecological energetics of the kestrel: daily energy expenditure throughout the year based on time-energy budget, food intake and doubly labeled water methods, Ardea, 76: 64–81.Google Scholar
  35. Masman, D., Daan, S., and Dijkstra, C., 1988b, Time allocation in the kestrel Falco tinnunculus), and the principle of energy minimization, J. Anim. Ecol., 57: 411–432.CrossRefGoogle Scholar
  36. Milne, H., 1976, Body weights and carcass composition of the common eider, Wildfowl, 27: 115.Google Scholar
  37. Mortensen, A., and Blix, A.S., 1985, Seasonal changes in the effects of starvation on metabolic rate and regulation of body weight in Svalbard ptarmigan, Ornis Scand., 16: 20.CrossRefGoogle Scholar
  38. Mrosovsky, N., and Powley, T.L., 1977, Set points for body weight and fat, Behav. Biol., 20: 205.PubMedCrossRefGoogle Scholar
  39. Mrosovsky, N., and Sherry, D.F., 1980, Animal anorexias, Science, 207: 837.PubMedCrossRefGoogle Scholar
  40. Newton, I., 1979, “Population Ecology of Raptors”, Berkhamsted, Poyser.Google Scholar
  41. Nilsson, J.-Å., and Smith, H.G., 1988, Incubation feeding as a male tactic for early hatching, Anim. Behav., 36: 641.CrossRefGoogle Scholar
  42. Pond, C.M., 1978, Morphological aspects and the ecological and mechanical consequences of fat deposition in wild vertebrates, Ann. Rev. Ecol. Syst., 9: 519.CrossRefGoogle Scholar
  43. Prévost, J., 1961, “Ecologie du Manchot Empereur”, Hermann, Paris.Google Scholar
  44. Prévost, J., and Vilter, V., 1962, Histologie de la sécrétion oesophagienne du Manchot empereur, in: “Proceedings, 13th International Ornithological Congress”, American Ornithologists’ Union, Baton Rouge.Google Scholar
  45. Reinertsen, R.E., and Haftorn, S., 1986, Different metabolic strategies of northern birds for nocturnal survival, J. Comp. Physiol. B, 156: 655.CrossRefGoogle Scholar
  46. Robin, J.-P., Cherel, Y., Girard, H., Chaban, C., and Le Maho, Y., 1988a, Augmentation du rendement azoté et hyperphagie associées à la réalimentation aprè s un jeûne prolongé chez l’oie domestique, C.R. Acad. Sci. Paris, 306, série 111: 375.PubMedGoogle Scholar
  47. Robin, J.-P., Frain, M., Sardet, C., Groscolas, R. and Le Maho, Y., 1988b, Protein and lipid utilization during long-term fasting in emperor penguins, Am. J. Physiol. 254 (Regulatory Integrative Comp. Physiol. 23): R61.PubMedGoogle Scholar
  48. Sladen, W.J.L., and Ostenso, N.A., 1960, Penguin tracks far inland in the Antarctic, Auk, 77: 466.CrossRefGoogle Scholar
  49. Stokkan, K.-A., Mortensen, A., and Blix, A.S., 1986, Food intake, feeding rhythm, and body mass regulation in Svalbard rock ptarmigan, Am. J. Physiol. 251 (Regulatory Integrative Comp. Physiol. 20): R264.PubMedGoogle Scholar
  50. Tinbergen, N., 1958, “Curious Naturalists”, Countrylife Ltd., London.Google Scholar
  51. Tøien, Ø., Aulie, A., and Steen, J.B., 1986, Thermoregulatory responses to egg cooling in incubating bantam hens, J. Comp. Physiol. B, 156: 303.CrossRefGoogle Scholar
  52. Weathers, W.W., 1985, Energy cost of incubation in the canary, Comp. Biochem. Physiol. 81 A: 411–413.CrossRefGoogle Scholar
  53. West, G.C., 1965, Shivering and heat production in wild birds, Physiol. Zoöl., 38: 111.Google Scholar
  54. Wingfield, J.C., 1988, Changes in reproductive function of free-living birds in direct response to environmental perturbations, in: “Processing of Environmental Information in Vertebrates”, M.H. Stetson, ed., Springer-Verlag, Heidelberg.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Jean-Patrice Robin
    • 1
  • Yves Handrich
    • 1
  • Yves Cherel
    • 1
  • Yvon Le Maho
    • 1
  1. 1.Laboratoire d’Etude des Régulations Physiologiques (associé à l’Université Louis Pasteur)Centre National de la Recherche ScientifiqueStrasbourgFrance

Personalised recommendations