Body Mass, Food Habits, and the Use of Torpor in Birds

  • Brian K. McNab
Part of the NATO ASI Series book series (ASIAS, volume 173)


The sensitivity of birds to cold temperatures varies greatly. Some cannot tolerate temperatures below 0°C, while others can tolerate temperatures between -20 and -40°C (see Steen, 1958), even at high wind velocities. Various factors, including body size, rate of metabolism, and insulation, directly influence this sensitivity. Response to low temperatures, however, also includes their evasion by migration and by entrance into torpor. The selection of a response, itself, is influenced by many factors, including body size, food habits, and rate of metabolism. The object of this paper is to examine the physiological and ecological conditions that determine which response to cold is used by birds.


Basal Rate Boundary Curve Food Habit Standard Metabolic Rate Evaporative Water Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aschoff, J., and Pohl, H., 1970, Der Ruheumsatz von Vögeln als Funktion der Tageszeit und der Korpergrosse, J. Ornith., 111: 38–47.CrossRefGoogle Scholar
  2. Bartholomew, G. A., and Trost, C. H., 1970, Temperature regulation in the speckled mousebird, Colius striatus, Condor, 72: 141–146.CrossRefGoogle Scholar
  3. Bartholomew, G. A., Hudson, J. W., and Howell, T. R., 1962, Body temperature, oxygen consumption, evaporative water loss, and heart rate in the poor-will, Condor, 64: 117–125.CrossRefGoogle Scholar
  4. Bartholomew, G. A., Vleck, C. M., and Bucher, T. L., 1983, Energy metabolism and nocturnal hypothermia in two tropical passerine frugivores, Manacus vitellinus and Pipra mentalis, Physiol. Zool., 56: 370–379.Google Scholar
  5. Bennett, P. M., and Harvey, P. H., 1987, Active and resting metabolism in birds: allometry, phylogeny and ecology, J. Zool., Lond., 213: 327–363.CrossRefGoogle Scholar
  6. Brody, S., 1945, “Bioenergetics and Growth,” Reinhold Publ. Corp., New York.Google Scholar
  7. Chapin, S. B., 1976, The physiology of hypothermia in the Black-capped Chickadee, Parus atricapillus, J. Comp. Physiol., 112B: 335–344.CrossRefGoogle Scholar
  8. Collins, B. G., Cary, G., and Payne, S., 1980, Metabolism, thermoregulation and evaporative water loss in two species of Australian nectar-feeding birds (Family Meliphagidae), Comp. Biochem. Physiol., 67A: 629–635.CrossRefGoogle Scholar
  9. Dawson, W. R., and Fisher, C. D., 1969, Responses to temperature by the spotted nightjar (Eurostopodus guttatus), Condor, 71: 49–53.CrossRefGoogle Scholar
  10. Ellis, H. I., 1980, Metabolism and solar radiation in dark and white herons in hot climates, Physiol. Zool., 53: 358–372.Google Scholar
  11. Ellis, H. I., 1984, Energetics of free-ranging seabirds, pages 203–234 in: “Seabird Energetics,” G. C. Whittow and H. Rahn, eds., Plenum Press, New York.CrossRefGoogle Scholar
  12. Hails, C. J., 1983, The metabolic rate of tropical birds, Condor, 85: 61–65.CrossRefGoogle Scholar
  13. Hayes, S. R., and Gessaman, J. A., 1980, The combined effects of air temperature, wind and radiation on the resting metabolism of avian raptors, J. Therm. Biol., 5: 119–125.CrossRefGoogle Scholar
  14. Irving, L., 1960, “Birds of Anaktuvuk Pass, Kobuk, and Old Crow”, Bull. 217, U. S. National Museum, Smithsonian Instit., Washington, D.C.Google Scholar
  15. Lasiewski, R. C., 1963, Oxygen consumption of torpid, resting, active, and flying hummingbirds, Physiol. Zool., 36: 122–140.Google Scholar
  16. Lasiewski, R. C., and Dawson, W. R., 1964, Physiological responses to temperature in the common nighthawk, Condor, 66: 477–490.CrossRefGoogle Scholar
  17. Lasiewski, R. C., and Dawson, W. R., 1967, A re-examination of the relation between standard metabolic rate and body weight in birds, Condor, 69: 13–23.CrossRefGoogle Scholar
  18. Lasiewski, R. C., and Lasiewski, R. J., 1967, Physiological responses of the Blue-throated and Rivoli’s Hummingbirds, Auk, 84: 34–48.CrossRefGoogle Scholar
  19. Lasiewski, R. C., Weathers, W. W., and Bernstein, M. H., 1967, Physiological responses of the giant hummingbird, Patagona gigas, Comp. Biochem. Physiol., 23: 797–813.PubMedCrossRefGoogle Scholar
  20. Lasiewski, R. C., Dawson, W. R., and Bartholomew, G. A., 1970, Temperature regulation in the Little Papuan Frogmouth, Podargus ocellatus, Condor, 72: 332–338.CrossRefGoogle Scholar
  21. MacMillen, R. E., 1974, Bioenergetics of Hawaiian honeycreepers: the Amakihi (Loxops virens) and the Anianiau (L. parva), Condor, 76: 62–69.CrossRefGoogle Scholar
  22. MacMillen, R. E., and Trost, C. H., 1967a, Thermoregulation and water loss in the Inca dove, Comp. Biochem. Physiol., 20: 263–273.CrossRefGoogle Scholar
  23. MacMillen, R. E., and Trost, C. H., 1967b, Nocturnal hypothermia in the Inca dove, Scardafella inca, Comp. Biochem. Physiol., 23: 243–253.PubMedCrossRefGoogle Scholar
  24. McAtee, W. L., 1947, Torpidity, Amer. Midi. Nat., 38: 191–206.CrossRefGoogle Scholar
  25. McNab, B. K., 1983, Energetics, body size, and the limits to endothermy, J. Zool., Lond., 199: 1–29.CrossRefGoogle Scholar
  26. McNab, B. K., 1984, Physiological convergence amongst ant-eating and termite-eating mammals, J. Zool., Lond., 203: 485–510.CrossRefGoogle Scholar
  27. McNab, B. K., 1986, The influence of food habits on the energetics of eutherian mammals, Ecol. Monogr., 56: 1–19.CrossRefGoogle Scholar
  28. McNab, B. K., 1988a, Complications inherent in scaling the basal rate of metabolism in mammals, Quart. Rev. Biol., 63: 25–54.PubMedCrossRefGoogle Scholar
  29. McNab, B. K., 1988b, Energy conservation in a tree-kangaroo (Dendrolagus matschiei) and the red panda (Ailurus fulgens), Physiol. Zool., 61Google Scholar
  30. McNab, B. K., in press, Food habits and basal rate of metabolism in birds, Oecologia, Berl.Google Scholar
  31. Prinzinger, R., Goppel, R., Lorenz, A., and Kulzer, E., 1986, Body temperature and metabolism in the red-backed mousebird (Colius castanotus) during fasting and torpor, Comp. Biochem. Physiol., 69A: 689–692.Google Scholar
  32. Prinzinger, R., and Hanssler, I., 1980, Metabolism-weight relationship in some small nonpasserine birds, Experientia, 36: 1299–1300.CrossRefGoogle Scholar
  33. Reinertsen, R. E., and Haftorn, S., 1986, Different metabolic strategies of northern birds for nocturnal survival, J. Comp. Physiol. B, 156: 655–663.CrossRefGoogle Scholar
  34. Scholander, P. F., Hock, R., Walters, V., and Irving, L., 1950, Adaptation to cold in arctic and tropical mammals and birds in relation to body temperature, insulation, and basal rate of metabolism, Biol. Bull., 99: 259–271.PubMedCrossRefGoogle Scholar
  35. Steen, J., 1958, Climatic adaptation in some small northern birds, Ecology, 39: 625–629.CrossRefGoogle Scholar
  36. Wasser, J. S., 1986, The relationship of energetics of falconiform birds to body mass and climate, Condor, 88: 57–62.CrossRefGoogle Scholar
  37. Weathers, W. W., 1979. Climatic adaptation in avian standard metabolic rate. Oecologia, Berl., 42: 81–89.Google Scholar
  38. Weathers, W. W., and Riper III, C. V., 1982, Temperature regulation in two endangered Hawaiian honeycreepers: the Palila (Psittirostra bailleui) and the Laysan finch (Psittirostra cantans), Auk, 99: 667–674.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Brian K. McNab
    • 1
  1. 1.Department of ZoologyUniversity of FloridaGainesvilleUSA

Personalised recommendations