Advertisement

Adaptive Capacity of the Pigeon’s Daily Body Temperature Rhythm

  • Rudolf Graf
  • H. Craig Heller
  • Sindu Krishna
  • Werner Rautenberg
  • Beate Misse
Part of the NATO ASI Series book series (ASIAS, volume 173)

Abstract

Daily cycles of deep body temperature (Tb) have been discovered in both mammals and birds already in the nineteenth century (Gierse, 1842 and Chossat, 1843 in Aschoff, 1970). Chossat mentioned in his study in pigeons that the magnitude of the temperature cycle was enhanced under the influence of food deprivation. This early report gives possibly a first hint at the adaptive function of body temperature temporal organization as accomplished by circadian temperature control.

Keywords

Core Temperature Metabolic Heat Production Deep Body Temperature Body Temperature Rhythm Daily Body Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aschoff, J., 1970, Circadian rhythm of activity and of body temperature, in: “Physiological and behavioral temperature regulation”, J.D. Hardy, A.P. Gagge, J.A.J. Stolwijk, eds., Springfield: IllinoisGoogle Scholar
  2. Biebach, H., 1977, Reduktion des Energiestoffwechsels und der Körpertemperatur hungernder Amseln (Turdus merula). J. Ornithologie., 118: 294–300.CrossRefGoogle Scholar
  3. Binkley, S., Kluth, E., Menaker, M., 1971, Pineal function in sparrows: Circadian rhythms and body temperature. Science., 174: 311–314.PubMedCrossRefGoogle Scholar
  4. Chossat, Ch., 1843, Recherches experimentales sur l’inanition. Des effects de l’inanition sur la chaleur animais. Ann Sci naturelles 2 Serie., 20: 293–326Google Scholar
  5. Dawson, W.R., Hudson, J.W., 1970, Birds, in: “Invertebrates and Nonmammalian vertebrates (comparative Physiology of Thermoregulation, I),” G.C. Whittow, ed., Academic Press: New York.Google Scholar
  6. Gierse, A., 1842, Quaenium sit ratio cloris organici partium inflammatione aborantium febrium..., Diss., Halle.Google Scholar
  7. Graf, R., 1980a, Diurnal changes of thermoregulatory functions in pigeons. I. Effector mechanisms. Pflügers Arch., 386: 173–179.PubMedCrossRefGoogle Scholar
  8. Graf, R., 1980b, Diurnal changes of thermoregulatory fuctions in pigeons. II. Spinal thermosensitivity. Pflügers Arch., 386: 181–185.PubMedCrossRefGoogle Scholar
  9. Graf, R., Necker, R., 1979, Cyclic and non-cyclic variations of spinal cord temperature related with temperature regulation in pigeons. Pflügers Arch., 380: 215–220.PubMedCrossRefGoogle Scholar
  10. Heller, H.C., Graf, R., Rautenberg, W., 1983, Circadian and arousal state influences on thermoregulation in the pigeon. Am J Physiol., 245: R321–R328.PubMedGoogle Scholar
  11. Kluger, M.J., D’alecy, L.G., 1975, Avian febrile response. J Physiol., 235: 223–232.Google Scholar
  12. MacMillen, R.E., and Trost, C.H., 1967, Nocturnal hypothermia in the inca dove, Scarda fella inca. Comp Biochem Physiol., 23: 243–253.PubMedCrossRefGoogle Scholar
  13. Peiponen, V.A., 1970, Body temperature fluctuations in the nightjav (Caprimulgus e. europaeus L.) in light conditions of southern Finland. Ann Zool Fennici., 7: 239–250.Google Scholar
  14. Reinertsen, R.E., 1983, Nocturnal hypothermia and its energetic significance for small birds living in the arctic and subartic regions. A review. Polar Res ns., 1: 264–284.Google Scholar
  15. Trost, C.H., 1972, Adaptations of horned larks (Eremophila alpestris) to hot environments. The Ank., 89: 506–527.Google Scholar
  16. van Kampen, M., 1974, Physical factors affecting energy expenditure, in: “Energy requirements of poultry,” T.R. Morris, B.M. Freeman, eds., British Poultry Science Ltd.: Edingurgh.Google Scholar
  17. Veghte, J.H., 1964, Thermal and metabolic responses of the grey jay to cold stress. Physiol Zool., 37: 316–328.Google Scholar
  18. Walker, L.E., Walker, J.M., Palea, J.W., Berger, R.J., 1983. A continuum of sleep and shallow torpor in fasting doves. Science., 221: 195–196.CrossRefGoogle Scholar
  19. Wolf, L.L., Hainsworth, F.R., 1972, Environmental influence on regulated body temperature in torpid humming birds. Comp Biochem Physiol., 41: 167–173.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Rudolf Graf
    • 1
  • H. Craig Heller
    • 2
  • Sindu Krishna
    • 2
  • Werner Rautenberg
    • 3
  • Beate Misse
    • 3
  1. 1.MPI für Neurologische ForschungKöln 91Germany
  2. 2.Dept. Biol. Sci.Stanford UniversityStanfordUSA
  3. 3.Inst. für TierphysiologieRuhr-UniversitätBochumGermany

Personalised recommendations