Sleep, Hypometabolism, and Torpor in Birds

  • H. Craig Heller
Part of the NATO ASI Series book series (ASIAS, volume 173)


Endothermy is energetically expensive, yet it has enabled birds and mammals to exploit a wide variety of extreme habitats where energy demands are high and food is frequently scarce. Increased energy demand coupled with decreased opportunity to feed may occur on a daily or on a seasonal basis. It is not surprising, therefore, that endotherms have evolved adaptations to reduce energy expenditure on daily and seasonal time scales. The oldest and most ubiquitous of these adaptations may be sleep. The argument has been advanced that specifically slow wave sleep, (SWS), also known as non-rapid eye movement (NREM) sleep evolved in parallel with endothermy as a means of reducing energy expenditure during the portion of the day that the animals were inactive (Walker & Berger, 1980). More extreme forms of adaptive hypometabolism, and shallow, daily torpor, and deep hibernation, may have evolved from the general mammalian and avian phenomenon of sleep (Heller et al, 1978).


Circadian Rhythm Food Deprivation Avian Species Slow Wave Sleep NREM Sleep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berger, R. J. and Walker, J. M., 1912, Sleep in the burrowing owl (Speotyto cunicularia hypugaea). Behavioral Biology. 7: 183.CrossRefGoogle Scholar
  2. Biebach, H., 1911, Das winterfett der Amsel (Turdus merula). J. Orn. 18: 117.Google Scholar
  3. Carpenter, F. L., 1974, Torpor in an Andean hummingbird: its ecological significance. Science. 183: 545.PubMedCrossRefGoogle Scholar
  4. Cassone, V. M. and Menaker M., 1984, Is the avian circadian system a neuroendocrine loop? J. Exp. Zool. 232: 539.PubMedCrossRefGoogle Scholar
  5. Chossat, C., 1943, Recherches experimentales sur l’inanition. Des effets de l’inanition sur la chaleur animale. Ann. Sci. naturelles 2 Serie. 20: 293.Google Scholar
  6. Dawson, W. R. and Fisher, C. D., 1969, Responses to temperature by the spotted nightjar (Eurostopodus guttatus). Condor. 71: 49.CrossRefGoogle Scholar
  7. Dawson, W. R. and Hudson, J. W., 1970, Birds. In: “Invertebrates and Nonmammalian Vertebrates: Comparative Physiology of Thermorégulation,” Vol. 1. Whittow, G. C., ed. Academic Press, New York.Google Scholar
  8. French, A. R., 1977, Periodicity of recurrent hypothermia during hibernation in the Pocket mouse, (Perognathus longimembris). J. Comp. Physiol. 115: 87.CrossRefGoogle Scholar
  9. French, A. R., 1982, Effects of temperature on the duration of arousal episodes during hibernation. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52(1): 216.Google Scholar
  10. Glotzbach, S. F. and Heller, C. H., 1976, Central nervous regulation of body temperature during sleep. Science. 194: 537.PubMedCrossRefGoogle Scholar
  11. Graf, R., 1980a, Diurnal changes of thermoregulatory functions in pigeons. Pflugers Arch. 386: 173.PubMedCrossRefGoogle Scholar
  12. Graf, R., 1980b, Diurnal changes of thermoregulatory functions in pigeons. Pflugers Arch. 386: 181.PubMedCrossRefGoogle Scholar
  13. Graf, R. Krishna, S. and Heller H. C., 1988, Regulated nocturnal hypothermia induced in pigeons by food deprivation. In press.Google Scholar
  14. Hainsworth, F. R., Collins, B. G. and Wolf, L. L., 1977, The function of torpor in hummingbirds. Physiol. Zool. 50: 215.Google Scholar
  15. Hainsworth, F. R. and Wolf, L. L., 1970, Regulation of oxygen consumption and body temperature during torpor in a hummingbird (Eulampis jugularis). Science. 168: 368.PubMedCrossRefGoogle Scholar
  16. Heller, C. H., 1979, Hibernation: neural aspects. Ann. Rev. Physiol. 41: 305.CrossRefGoogle Scholar
  17. Heller, H. C., Walker, J., Florant, G., Glotzbach, S. F. and Berger, R. J., 1978, Sleep and hibernation: Electrophysiological and thermoregulatory homologies. In: “Strategies in Cold: Natural Torpidity and Thermogenesis,” Wang, L. C. H. and Hudson, J. W. eds., Academic Press, New York.Google Scholar
  18. Heller, H. C., Graf, R. and Rautenberg, W., 1983, Circadian and arousal state influences on thermoregulation in pigeons. Am. J. Physiol. 245: R321.PubMedGoogle Scholar
  19. Heller, H. C. and Glotzbach, S. F., 1985, Thermoregulation and sleep. In: “Heat Transfer in Medicine and Biology Analysis and Applications,” A. Shitzer and R. C. Eberhard, eds., Plenum Press, New York.Google Scholar
  20. Heller, H. C. and Kilduff, T. S., 1985, Neural control of mammalian hibernation. In: “Circulation, Respiration and Metabolism,” Gilles, R., ed., Springer-Verlag, Berlin Heidelberg.Google Scholar
  21. Heller, H. C., 1987, Sleep and hypometabolism. Can J. Zool. 66: 61.CrossRefGoogle Scholar
  22. Howell, T. R. and Bartholomew G. A., 1959, Further experiments on torpidity in the poorwill. Condor. 61: 180.CrossRefGoogle Scholar
  23. Ivacic, D. C. and Labisky, R. F., 1973, Metabolic responses of mourning doves to short-term food and temperature stresses in winter. The Wilson Bull. 85: 182.Google Scholar
  24. Jaeger, E. C., 1949, Further observations on the hibernation of the poorwill. Condor. 51: 105.CrossRefGoogle Scholar
  25. Ketterson, E. D. and King, J. R., 1988, Metabolic and behavioral responses to fasting in the White-crowned sparrow (Zonotrichia leucophrys gambelii). Physiol. Zool. 50(2): 115.Google Scholar
  26. Lasiewski, R. C. and Dawson W. R., 1964, Physiological responses to temperature in the common nighthawk. Condor. 66: 477.CrossRefGoogle Scholar
  27. Ligon, J. D., 1970, Still more responses of the poorwill to low temperatures. Condor. 72: 496.CrossRefGoogle Scholar
  28. Marshall, J. T., 1955, Hibernation in captive goatsuckers. Condor. 57: 129.CrossRefGoogle Scholar
  29. MacMillan, R. E. and Trost, C. H., 1967, Nocturnal hypothermia in the Inca dove. Scardefella inca. Comp. Biochem. Physiol. 23: 243.CrossRefGoogle Scholar
  30. Menaker, M., 1961, The free-running period of the bat clock: seasonal variations at low body temperatures. J. Cell, comp. Physiol. 57: 81.CrossRefGoogle Scholar
  31. Peiponen, V. A., 1970, Body temperature fluctuations in the nightjar (Caprimulgus e. europaeus L.) in light conditions of southern Finland. Ann. Zool. Fennici. 7: 239.Google Scholar
  32. Prinzinger, R., Goppel, R., Lorenz, A., and Kulzer, E., 1981, Body temperature and metabolism in the red-backed mousebird (Colius castantus) during fasting and torpor. Comp. Biochem. Physiol. 69A: 689.CrossRefGoogle Scholar
  33. Prinzinger, R. and Schuchmann, K. L., 1986, Torpor in hummingbirds (Trochilidae), XIX Congressus Internationalis Orinithologius, Ottawa, Abst. 908.Google Scholar
  34. Rautenberg, W. R., Necker, R. and May, B., 1972, Thermoregulatory responses of the pigeon to changes of the brain and spinal cord temperatures. Pflugers Arch. 338: 31.PubMedCrossRefGoogle Scholar
  35. Reinertsen, R. E., 1983, Nocturnal hypothermia and its energetic significance for small birds living in the arctic and subarctic regions. Polar Res. n.s. 1: 264.Google Scholar
  36. Twente, J. W. and Twente, J. A., 1965, Regulation of hibernation periods by temperature. Proc. N. A. S. 54: 1058.CrossRefGoogle Scholar
  37. Turek, F. W., 1985, Circadian neural rhythms in mammals. Ann. Rev. Physiol. 47: 49.CrossRefGoogle Scholar
  38. Walker, J. M. and Berger R. J., 1972, Sleep in the domestic pigeon. Behav. Biol. 7: 195.PubMedCrossRefGoogle Scholar
  39. Walker, J. M. and Berger, R. J., 1980, Sleep as an adaptation for energy conservation functionally related to hibernation and shallow torpor. Prog. in Brain Research. 53: 255.CrossRefGoogle Scholar
  40. Walker, J. M., Garber, A., Berger, R. J. and Heller, H. C. 1979, Sleep and estivation (shallow torpor): continuous processes of energy conservation. Science. 204: 1098.PubMedCrossRefGoogle Scholar
  41. Walker, J. M., Haskell, E., Berger, R. J. and Heller, H. C., 1977, Sleep and hibernation in ground squirrels (Citellus spp.): electrophysiological observations. Am. J. Physiol. 233: R213.PubMedGoogle Scholar
  42. Walker, J. M., Haskell, E., Berger, R. J. and Heller, H. C., 1981, Hibernation at moderate temperatures: A continuation of slow wave sleep. Experientia. 37: 726.PubMedCrossRefGoogle Scholar
  43. Walker, L. E., Walker, J. M., Palca, J. W. and Berger, R. J., 1983, A continum of sleep and shallow torpor in fasting doves. Science: 221: 195.CrossRefGoogle Scholar
  44. Withers, P. C., 1976, Respiration, metabolism and heat exchange of euthermic and torpid poorwills and hummingbirds. Phys. Zool: 50: 43.Google Scholar
  45. Wolf, L. L. and Hainsworth, F. R., 1972, Environmental influence on regulated body temperature in torpid hummingbirds. Comp. Biochem. Physiol. 41: 167.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • H. Craig Heller
    • 1
  1. 1.Department of Biological SciencesStanford UniversityStanfordUSA

Personalised recommendations