Circulatory Adaptations to Cold in Birds

  • Uffe Midtgård
Part of the NATO ASI Series book series (ASIAS, volume 173)


The maintenance of high body temperatures in homeothermic animals is to a large extent dependent on an effective insulation like feathers, fur, or subcutaneous fat. However, in most animals the insulative covering is more or less incomplete, and in birds the beak, eyes, feet, and underside of wings are generally naked or poorly feathered. Together with the upper part of the respiratory tract, these surfaces constitute potential heat loss areas and have therfore been characterized as thermal windows (Schmidt-Nielsen, 1983). There is an obvious advantage in reducing heat loss from the naked extremities in a cool environment, but this is complicated by the circulating blood which will enevitably carry heat to these areas from the body core by means of internal convection. In contrast, a surplus of heat flow to unprotected areas may be of vital importance in order to prevent the tissue from freezing during exposure to subzero ambient temperature.


Heat Exchanger Vasoactive Intestinal Polypeptide Giant Fulmar Reduce Heat Loss Arteriovenous Anastomosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aulie, A., 1976. The shivering pattern in an arctic (willow ptarmigan) and a tropical bird (bantam hen). Comp. Biochem. Physiol., 53A: 347.CrossRefGoogle Scholar
  2. Bazett, H.C., Love, L., Newton, M., Eisenberg, L., Day, R., and Foster, R., 1948. Temperature changes in blood flowing in arteries and veins in man. J. Appl. Physiol., 1: 3.PubMedGoogle Scholar
  3. Bernstein, M.H., Sandoval, I., Curtis, M.B., and Hudson, D.M., 1979. Brain temperature in pigeons: Effects of anterior respiratory bypass. J. Comp. Physiol., 129: 115.CrossRefGoogle Scholar
  4. Burnstock, G., 1972. Purinergic nerves. Pharmacol. Rev., 24: 509.PubMedGoogle Scholar
  5. Clara, M., 1956. Die arterio-venösen Anastomosen. Anatomie, Biologie, Pathologie. Springer, Wien.Google Scholar
  6. Ederstrom, H.E., Brumleve, S.J., 1964. Temperature gradients in the legs of cold-acclimatized pheasants. Am. J. Physiol., 207: 457.PubMedGoogle Scholar
  7. Folkow, B., Fox, R.H., Krog, J., Odelram, H., and Thoren, O., 1963. Studies on the reactions of cutaneous vessels to cold exposure. Acta Physiol. Scand., 58: 342.PubMedCrossRefGoogle Scholar
  8. Franz, D.R., 1985. The effect of indomethacin on cold-induced vasodilatation in the cat. T. Therm. Biol., 10: 245.CrossRefGoogle Scholar
  9. Frost, P.G.H., Siegfried, W.R., and Greenwood, P.J., 1975. Arterio-venous heat exchange systems in the Jackass penguin, Spheniscus demersus. J. Zool., Lond., 175: 231.CrossRefGoogle Scholar
  10. Gabrielsen, G., and Steen, J.B., 1979. Tachycardia during egghypothermia in incubating ptarmigan (Lagopus lagopus). Acta Physiol. Scand., 107: 273.PubMedCrossRefGoogle Scholar
  11. Grant, R.T., and Bland, E.F., 1931. Observations on arteriovenous anastomoses in human skin and in the bird’s foot with special reference to the reaction to cold. Heart, 15: 385.Google Scholar
  12. Greenfield, A.D.M., Shepherd, J.T., and Whelan, R.F., 1951. The part played by the nervous system in the response to cold of the circulation through the finger tip. Clin. Sci., 10: 347.PubMedGoogle Scholar
  13. Guard, C.L., and Murrish, D.E., 1975. Effects of temperature on viscous behavior of blood from antarctic birds and mammals. Comp. Biochem. Physiol., 52: 287.CrossRefGoogle Scholar
  14. Hales, J.R.S., 1985. Skin arteriovenous anstomoses, their control and role in thermoregulation. In: “Cardiovascular Shunts”, K. Johansen and W. Burggren, eds., Munksgaard, Copenhagen.Google Scholar
  15. Hales, J.R.S., Midtgård, U., and Fawcett, A.A. Arteriovenous anastomoses are the target of cutaneous cold-induced vasodilatation. In prep.Google Scholar
  16. Heroux, O., and St. Pierre, J., 1957. Effect of cold acclimation on vascularization of ears, heart, liver and muscles of white rats. Am. J. Physiol., 188: 163.PubMedGoogle Scholar
  17. Hillman, P.E., Scott, N.R., and van Tienhoven, A., 1982. Vasomotion in chicken foot: dual innervation of arteriovenous anastomoses. Am. J. Physiol., 242: R582.PubMedGoogle Scholar
  18. Hyrtl, J., 1864. Neue Wundernetze und Geflechte bei Vögeln und Säugethieren. Denksch. d. Kaiserl. Akad. d. Wissensch. Wien, 22: 113.Google Scholar
  19. Johansen, K., and Millard, R.W., 1973. Vascular responses to temperature in the foot of the Giant fulmar, Macronectes giganteus. J. Comp. Physiol., 85: 47.CrossRefGoogle Scholar
  20. Johansen, K., and Millard, R.W., 1974. Cold-induced neurogenic vasodilatation in the skin of the Giant fulmar, Macronectes giganteus. Am. J. Physiol., 227: 1232.PubMedGoogle Scholar
  21. Kahl, M.R., 1963. Thermoregulation in the Wood stork, with special reference to the role of the legs. Physiol. Zool., 36: 141.Google Scholar
  22. Kilgore, D.L., Jr., and Schmidt-Nielsen, K., 1975. Heat loss from ducks’ feet immersed in cold water. Condor, 77: 475.CrossRefGoogle Scholar
  23. Kilgore, D.L., Jr., Boggs, D.F., and Birchard, CF., 1979. Role of the rete mirabile ophthalmicum in maintaining the body-to-brain temperature difference in pigeons. J. Comp. Physiol., 129: 119.CrossRefGoogle Scholar
  24. Larsson, L.-I., 1977. Ultrastructural localization of a new neuronal peptide (VIP). Histochemistry, 54: 173.PubMedCrossRefGoogle Scholar
  25. Lewis, T., 1930. Observation upon the reactions of the vessels of the human skin to cold. Heart, 15: 177.Google Scholar
  26. Lundberg, J.M., Anggård, A., and Fahrenkrug, J., 1982. VIP as a mediator of hexamethonium-sensitive, atropine-resistant vasodilation in the cat tongue. Acta Physiol. Scand., 116: 387.PubMedCrossRefGoogle Scholar
  27. McGregor, D.D., 1979. Noncholinergic vasodilator innervation in the feet of ducks and chickens. Am. J. Physiol., 237: H112.PubMedGoogle Scholar
  28. Midtgård, U., 1980a. Heat loss from the feet of mallards Anas platyrhynchos and arterio-venous heat exchange in the rete tibiotarsale. Ibis, 122: 354.CrossRefGoogle Scholar
  29. Midtgård, U., 1980b. Blood vessels in the hind limb of the mallard (Anas platyrhynchos): Anatomical evidence for a sphincteric action of shunt vessels in connection with the arterio-venous heat exchange system. Acta Zool., Stockh., 61: 39.CrossRefGoogle Scholar
  30. Midtgård, U., 1981. The rete tibiotarsale and arterio-venous association in the hind limb of birds: A comparative morphological study on counter-current heat exchange systems. Acta Zool., Stockh., 62: 67.CrossRefGoogle Scholar
  31. Midtgård, U., 1986. The peripheral circulatory system in birds. Thesis, University of Copenhagen, Copenhagen.Google Scholar
  32. Midtgård, U., 1988. Innervation of arteriovenous anastomoses in the brood patch of the domestic fowl. Cell Tissue Res., 252: 207.PubMedCrossRefGoogle Scholar
  33. Midtgård, U., and Bech, C., 1981. Responses to catecholamines and nerve stimulation of the perfused rete tibiotarsale and associated blood vessels in the hind limb of the Mallard (Anas platyrhynchos). Acta Physiol. Scand., 112: 77.PubMedCrossRefGoogle Scholar
  34. Midtgård, U., Sejrsen, P., and Johansen, K., 1985. Blood flow in the brood patch of Bantam hens: evidence of cold vasodilatation. J. Comp. Physiol. B., 155: 703.CrossRefGoogle Scholar
  35. Millard, R.W., and Reite, O.B., 1975. Peripheral vascular response to norepinephrine at temperatures from 2 to 40° C. J. Appl. Physiol., 38: 26.PubMedGoogle Scholar
  36. Molyneux, G.S., and Harmon, B., 1982. Innervation of arteriovenous anastomoses in the web of the foot of the domestic duck, Anas platyrhynchos. Structural evidence for the presence of non-adrenergic non-cholinergic nerves. J. Anat. 135: 119.PubMedCentralPubMedGoogle Scholar
  37. Murrish, D.E., and Guard, C.L., 1977. Cardiovascular adaptations of the Giant petrel, Macronectes giganteus, to the antarctic environment. In: “Adaptations within Antarctic Ecosystems”, G.A. Llano, ed., Smithsonian Institute, Washington D.C.Google Scholar
  38. Rautenberg, W., 1969. Untersuchungen zur Temperaturregulation wärme-und kälteakklimatisierter Tauben. Z. Vergl. Physiol., 62: 221.CrossRefGoogle Scholar
  39. Reite, O.B., Millard, R.W., and Johansen, K., 1977. Effects of low temperature on peripheral vascular control mechanisms. Acta Physiol. Scand., 101: 247.PubMedCrossRefGoogle Scholar
  40. Schmidt-Nielsen, K., 1983. Animal Physiology. University Press, Cambridge.Google Scholar
  41. Scholander, P.F., 1955. Evolution of climatic adaptations in homeotherms. Evolution, 9: 15.CrossRefGoogle Scholar
  42. Scholander, P.F., Walters, V., Hock, R., and Irving, L., 1950. Body insulation of some arctic and tropical mammals and birds. Biol. Bull., 99: 225.PubMedCrossRefGoogle Scholar
  43. Smith, D.J., 1952. Constriction of isolated arteries and their vasa vasorum produced by low temperatures. Am. J. Physiol., 171: 528.PubMedGoogle Scholar
  44. Steen, I., and Steen, J.B., 1965. The importance of the legs in the thermoregulation of birds. Acta Physiol. Scand., 63: 285.PubMedCrossRefGoogle Scholar
  45. Sturkie, P.D., 1967. Cardiovascular effects of acclimatization to heat and cold in chickens. J. Appl. Physiol., 22: 13.PubMedGoogle Scholar
  46. Trawa, G., 1970. Note preliminaire sur la vascularisation des membres des spheniscides de Terre Adelie. L’Oiseau Rev. Franc. Ornithol., 40: 142.Google Scholar
  47. Tøien, Ø., Aulie, A., and Steen, J.B., 1986. Thermoregulatory responses to egg cooling in incubating bantam hens. J. Comp. Physiol. B., 156: 303.CrossRefGoogle Scholar
  48. Watson, M., 1883. Report on the anatomy of the Spheniscidae. Report on the scientific results of the voyage of H.M.S. Challenger during the years 1873-76, London, Zoology Vol., 7: 1.Google Scholar
  49. Winquist, R.J., and Bevan, J.A., 1980. Temperature sensitivity of tone in the rabbit facial vein: Myogenic mechanism for cranial thermoregulation. Science, 207: 1001.PubMedCrossRefGoogle Scholar
  50. Wolfenson, D. 1983. Blood flow through arteriovenous anastomoses and iths thermal function in the laying hen. J. Physiol., Lond., 334: 395.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Uffe Midtgård
    • 1
  1. 1.Institute of Cell Biology and AnatomyCopenhagenDenmark

Personalised recommendations