Advertisement

Respiration by Birds at High Altitude and in Flight

  • Marvin H. Bernstein
Part of the NATO ASI Series book series (ASIAS, volume 173)

Abstract

When they fly, birds use more energy per unit of time than any other exercising vertebrate of similar size. Oxygen transfer to their tissues must therefore be especially efficient. Some birds visit and others reside at high altitudes, where environmental temperatures and available O2 are below the tolerance limits for many mammals. At 7,000 meters above sea level (ASL) where several birds are found, for example, barometric pressure (PB) and O2 partial pressure (PO2) fall to 308 Torr and 65 Torr, respectively. Mean air temperature (Ta) reaches an average of -30°C at the same height.

Keywords

High Altitude Tidal Volume Hypobaric Hypoxia Brain Temperature Evaporative Water Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bech, C., Johansen, K., and Maloiy, G. M. O., 1979, Ventilation and expired gas composition in the Flamingo, Phoenicopterus ruber, during normal respiration and panting, Physiological Zoology, 52: 313.Google Scholar
  2. Berger, M., 1974, Energiewechsel von Kolibris beim Schwirrflug unter Hohenbedingungen, Journal für Ornithologie, 115: 273.CrossRefGoogle Scholar
  3. Berger, M., 1978, Ventilation in the hummingbird Colibri coruscans during altitude hovering, in: “Respiratory Function in Birds, Adult and Embryonic,” J. Piiper, ed., Springer, New York.Google Scholar
  4. Bernstein, M. H., 1987, Respiration in flying birds, in: “Bird Respiration,” T. J. Sellers, ed., CRC Press, Boca Raton.Google Scholar
  5. Bernstein, M. H., 1989, Temperature and oxygen supply in the avian brain, in: “Comparative Pulmonary Physiology,” S. C. Wood, ed., Dekker, New York.Google Scholar
  6. Bernstein, M. H., Curtis, M. B., and Hudson, D. M., 1979, Independence of brain and body temperatures in flying American Kestrels Falco sparverius, American Journal of Physiology, 237: R58.PubMedGoogle Scholar
  7. Bernstein, M. H., Duran, H. L., and Pinshow, B., 1984, Extrapulmonary gas exchange enhances brain oxygen in pigeons. Science, 226: 564.PubMedCrossRefGoogle Scholar
  8. Bernstein, M. H., Sandoval, I., Curtis, M. B., and Hudson, D. M., 1979, Brain temperature in pigeons: Effects of anterior respiratory bypass, Journal of Comparative Physiology, 129: 115.CrossRefGoogle Scholar
  9. Black, C. P., and Tenney, S. M., 1980, Oxygen transport during progressive hypoxia in high-altitude and sea-level waterfowl, Respiration Physiology, 39: 217.PubMedCrossRefGoogle Scholar
  10. Butler, P. J., West, N. H., and Jones, D. R., 1977, Respiratory and cardiovascular responses of the pigeon to sustained, level flight in a wind-tunnel, Journal of Experimental Biology, 71: 7.Google Scholar
  11. Chappell, M. A., and Bucher, T. L., 1987, Effects of temperature and altitude on ventilation and gas exchange in chukars Alectoris chukar, Journal of Comparative Physiology, 157: 129.CrossRefGoogle Scholar
  12. Clair, P. M., 1985, The rete mirabile ophthalmicum of the double-crested cormorant (Phalacrocorax auritus): its form and function, M.S. Thesis, New Mexico State University.Google Scholar
  13. Crawford, E. C., Jr., and Lasiewski, R. C., 1968, Oxygen consumption and respiratory evaporation of the Emu and Rhea, Condor, 70: 333.CrossRefGoogle Scholar
  14. Faraci, F. M., Kilgore, D. L., Jr., and Fedde, M. R., 1984, Oxygen delivery to the heart and brain during hypoxia: Pekin Duck vs. Bar-headed Goose, American Journal of Physiology, 247: R69.PubMedGoogle Scholar
  15. Grubb, B., Colacino, J. M., and Schmidt-Nielsen, K., 1978, Cerebral blood flow in birds: effect of hypoxia, American Journal of Physiology, 234: H230.PubMedGoogle Scholar
  16. Hudson, D. M., and Bernstein, M. H., 1981, Temperature regulation and heat balance in flying White-necked Ravens, Corvus cryptoleucus, Journal of Experimental Biology, 90: 267.Google Scholar
  17. Hudson, D. M., and Bernstein, M. H., 1983, Gas exchange and energy cost of flight in the white-necked raven, Corvus cryptoleucus, Journal of Experimental Biology, 103: 121.PubMedGoogle Scholar
  18. Kawashiro, T., Campos Carles, A., Perry, S. F., and Piiper, J., 1975, Diffusivity of various inert gases in rat skeletal muscle, Pflügers Archiv, 219.Google Scholar
  19. Kilgore, D. L., Jr., Boggs, D. F., and Birchard, G. F., 1979, Role of the rete mirabile ophthalmicum in maintaining the body to brain temperature difference in pigeons, Journal of Comparative Physiology, 129: 119.CrossRefGoogle Scholar
  20. Lasiewski, R. C., and Dawson, W. R., 1967, A re-examination of the relation between standard metabolic rate and body weight in birds, Condor, 69: 13.CrossRefGoogle Scholar
  21. List, R. J., 1951, Smithsonian Meteorological Tables, Smithsonian, Washington, DC.Google Scholar
  22. Midtgard, U., 1983, Scaling of the brain and the eye cooling system in birds: A morphometric analysis of the rete ophthalmicum. Journal of Experimental Zoology, 225: 197.PubMedCrossRefGoogle Scholar
  23. Midtgard, U., 1984, Blood vessels and the occurrence of arteriovenous anastomoses in cephalic heat loss areas of Mallards, Anas platyrhynchos (Aves), Zoomorphology, 104: 323.CrossRefGoogle Scholar
  24. Pinshow, B., Bernstein, M. H., and Arad, Z., 1985, Effects of temperature and PCO2 on O2 affinity of pigeon blood: implications for brain °2 supply, American Journal of Physiology, 249: R758.PubMedGoogle Scholar
  25. Schmidt-Nielsen, K., Hainsworth, F. R., and Murrish, D. E., 1970, Counter current heat exchange in the respiratory passages: effect on water and heat balance, Respiration Physiology, 9: 263.PubMedCrossRefGoogle Scholar
  26. Torre-Bueno, J. R., 1985, The energetics of avian flight at altitude, in: “Biona Report 3: Bird Flight-Vogelflug,” W. Nachtigall, ed., Gustav Fischer, Stuttgart.Google Scholar
  27. Weinstein, Y., Bernstein, M. H., Bickler, P. E., Gonzales, D. V., Samaniego, F. C., and Escobedo, M. A., 1985, Blood respiratory properties in pigeons at high altitudes: effects of acclimation, American Journal of Physiology, 249: R765.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Marvin H. Bernstein
    • 1
  1. 1.New Mexico State UniversityLas CrucesUSA

Personalised recommendations