Respiration and Gas Exchange in Birds

  • Johannes Piiper
  • Peter Scheid
Part of the NATO ASI Series book series (ASIAS, volume 173)


Lungs of birds are homologous to lungs of mammals, and both are phylogenetically derived from those of their reptilian ancestors. There exist, however, fundamental differences between avian and mammalian lungs in anatomical design, leading to differences in respiratory gas flow pattern and in gas exchange function. The subject has been recently reviewed by Fedde (1976), Scheid (1979, 1982), Scheid and Piiper (1987; in press), Powell and Scheid (in press).


Main Bronchus Mammalian Lung Haldane Effect Pco2 Difference Horizontal Septum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banzett, R.B., Butler, J.P., Nations, C.S., Barnas, G.M., Lehr, J.L., and Jones, J.H., 1987, Inspiratory aerodynamic valving in goose lungs depends on gas density and velocity, Respir. Physiol., 70: 287–300.PubMedCrossRefGoogle Scholar
  2. Bouverot, P. and Dejours, P., 1971, Pathway of respired gas in the air sacs-lung apparatus of fowl and ducks, Respir. Physiol., 13: 330–342.PubMedCrossRefGoogle Scholar
  3. Brackenbury, J.H., 1971, Airflow dynamics in the avian lung as determined by direct and indirect methods, Respir. Physiol., 13: 319–329.PubMedCrossRefGoogle Scholar
  4. Brackenbury, J.H., 1972a, Lung-air sac anatomy and respiratory pressures in the birds, J. Exp. Biol., 57: 543–550.PubMedGoogle Scholar
  5. Brackenbury, J.H., 1972b, Physical determinants of air flow pattern within the avian lung, Respir. Physiol., 15: 384–397.PubMedCrossRefGoogle Scholar
  6. Brent, R., Rasmussen, J.G., Bech, C., and Martini, S., 1983, Temperature dependence of ventilation and O2 extraction in the Kittiwake (Rissa tridactvla), Experientia, 39: 1092–1093.CrossRefGoogle Scholar
  7. Brent, R., Pedersen, P.F., Bech, C., and Johansen, K., 1984, Lung ventilation and temperature in the European coot Fulica atra, Physiol. Zool., 57: 19–25.Google Scholar
  8. Bretz, W.L. and Schmidt-Nielsen, K., 1971, Bird respiration: Flow patterns in the duck lung, J. Exp. Biol., 54: 103–118.PubMedGoogle Scholar
  9. Bretz, W.L. and Schmidt-Nielsen, K., 1972, The movement of gas in the respiratory system of the duck, J. Exp. Biol., 56: 57–65.Google Scholar
  10. Burger, R.E., Meyer, M., Graf, W., and Scheid, P., 1979, Gas exchange in the parabronchial lung of birds: Experiments in unidirectionally ventilated ducks. Respir. Physiol., 36: 19–37.PubMedCrossRefGoogle Scholar
  11. Butler, J.P., Banzett, R.B., and Fredberg, J.J., 1988, Inspiratory valving in avian bronchi: aerodynamic considerations, Respir. Physiol., 72: 241–256.PubMedCrossRefGoogle Scholar
  12. Davies, D.G. and Dutton, R.E., 1975, Gas-blood Pco2 gradients during avian gas exchange, J. Appl. Physiol., 39: 405–410.PubMedGoogle Scholar
  13. Duncker, H.R., 1971, The lung air sac system of birds, Ergeb. Anat. Entwicklungsgesetz., 45: Heft 6.Google Scholar
  14. Duncker, H.R., 1972, Structure of avian lungs, Respir. Physiol., 14: 44–63.PubMedCrossRefGoogle Scholar
  15. Duncker, H.R., 1974, Structure of the avian respiratory tract, Respir. Physiol., 22: 1–19.PubMedCrossRefGoogle Scholar
  16. Fedde, M.R., 1976, Respiration, in: “Avian Physiology”, P.D. Sturkie, ed., pp. 122–145, Springer, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
  17. Fedde, M.R., Burger, R.E., and Kitchell, R.L., 1964, Electromyographic studies of the effects of bodily position and anesthesia on the activity of the respiratory muscles of the domestic cock, Poultry Sci., 43: 839–846.CrossRefGoogle Scholar
  18. Geiser, J., Gratz, R.K., Hiramoto, T., and Scheid, P., 1984, Effects of increasing metabolism by 2,4-dinitrophenol on respiration and pulmonary gas exchange in the duck, Respir. Physiol., 57: 1–14.PubMedCrossRefGoogle Scholar
  19. Gurtner, G.H., Song, S.H., and Farhi, L.E., 1969, Alveolar to mixed venous Pco2 difference under conditions of no gas exchange, Respir. Physiol., 7: 173–187.PubMedCrossRefGoogle Scholar
  20. Kuethe, D.O., 1988, Fluid mechanical valving of air flow in bird lungs, J. Exp. Biol., 136: 1–12.PubMedGoogle Scholar
  21. Macklem, P.T., Bouverot, P., and Scheid, P., 1979, Measurement of the distensibility of the parabronchi in duck lungs, Respir. Physiol., 38: 23–35.PubMedCrossRefGoogle Scholar
  22. Meyer, M., Worth, H., and Scheid, P., 1976, Gas-blood CO2 equilibration in parabronchial lungs of birds, J. Appl. Physiol., 41: 302–309.PubMedGoogle Scholar
  23. Piiper, J., 1978, Origin of carbon dioxide in caudal air sacs of birds, in: “Respiratory Function in Birds, Adult and Embryonic”, J. Piiper, ed., pp. 148–153, Springer, Heidelberg, New York.CrossRefGoogle Scholar
  24. Piiper, J., 1986, Blood-gas equilibrium of carbon dioxide in lungs: a continuing controversy, J. Appl. Physiol., 60: 1–8.PubMedCrossRefGoogle Scholar
  25. Powell, F.L. and Scheid, P., in press, Physiology of gas exchange in the avian respiratory system, in: “Form and Function in Birds”, A.S. King and J. McLelland, eds, Vol. 3, Academic Press, London.Google Scholar
  26. Powell, F.L. and Wagner, P.D., 1982a, Measurement of continuous distributions of ventilation-perfusion in non-alveolar lungs, Respir. Physiol., 48: 219–232.PubMedCrossRefGoogle Scholar
  27. Powell, F.L. and Wagner, P.D., 1982b, Ventilation-perfusion inequality in avian lungs, Respir. Physiol., 48: 233–241.PubMedCrossRefGoogle Scholar
  28. Powell, F.L., Geiser, J., Gratz, R.K., and Scheid, P., 1981, Airflow in the avian respiratory tract: variations of O2 and CO2 concentrations in the bronchi of the duck, Respir. Physiol., 44: 195–213PubMedCrossRefGoogle Scholar
  29. Scheid, P., 1978a, Analysis of gas exchange between air capillaries and blood capillaries in avian lungs, Respir. Physiol., 32: 27–49.PubMedCrossRefGoogle Scholar
  30. Scheid, P., 1978b, Estimation of effectivé parabronchial gas volume during intermittent ventilatory flow: theory and application in the duck, Respir. Physiol., 32: 1–14.PubMedCrossRefGoogle Scholar
  31. Scheid, P., 1979, Mechanisms of gas exchange in bird lungs, Rev. Physiol. Biochem. Pharmacol., 86: 137–186.PubMedCrossRefGoogle Scholar
  32. Scheid, P., 1982, Respiration and control of breathing, in: “Avian Biology”, D.S. Farner and J.R. King, eds., Vol. VI, pp. 405–453, Academic Press, New York, San Francisco, London.CrossRefGoogle Scholar
  33. Scheid, P. and Piiper, J., 1971, Direct measurement of the pathway of respired gas in duck lungs, Respir. Physiol., 11: 308–314.PubMedCrossRefGoogle Scholar
  34. Scheid, P. and Piiper, J., 1972, Cross-current gas exchange in avian lungs: effects of reversed parabronchial air flow in ducks. Respir. Physiol., 16: 304–312.PubMedCrossRefGoogle Scholar
  35. Scheid, P. and Piiper, J., 1987, Gas exchange and transport, in: “Bird Respiration”, T.J. Seller, ed., Vol. I, pp. 97–129, CRC Press, Boca Raton FL.Google Scholar
  36. Scheid, P. and Piiper, J., in press, Respiratory mechanics and air flow in birds, in: “Form and Function in Birds”, A.S. King and J. McLelland, eds., Vol. 3, Academic Press, London.Google Scholar
  37. Scheid, P., Slama, H., and Piiper, J., 1972, Mechanisms of unidirectional flow in parabronchi of avian lungs: measurements in duck lung preparations, Respir. Physiol., 14: 83–95.PubMedCrossRefGoogle Scholar
  38. Scheid, P., Slama, H., Gatz, R.N., and Fedde, M.R., 1974a, Intrapulmonary CO2 receptors in the duck. III. Functional localization. Respir. Physiol., 22: 123–136.PubMedCrossRefGoogle Scholar
  39. Scheid, P., Slama, H., and Willmer, H., 1974b, Volume and ventilation of air sacs in ducks studied by inert gas wash-out. Respir. Physiol., 21: 19–36.PubMedCrossRefGoogle Scholar
  40. Scheid, P., Worth, H., Holle, J.P., and Meyer, M., 1977, Effects of oscillating and intermittent ventilatory flow on efficacy of pulmonary O2 transfer in the duck, Respir. Physiol., 31: 251–258.PubMedCrossRefGoogle Scholar
  41. Schmidt-Nielsen, K., 1971, How birds breathe, Sci. Am., No. 6, 225: 72–79.CrossRefGoogle Scholar
  42. Zeuthen, E., 1942, The ventilation of the respiratory tract in birds, Kgl. Dans. Vidensk. Selsk. Biol. Med., 17: 1–50.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Johannes Piiper
    • 1
    • 2
  • Peter Scheid
    • 1
    • 2
  1. 1.Abteilung PhysiologieMax-Planck-Institut für experimentelle MedizinGöttingenGermany
  2. 2.Institut für PhysiologieRuhr-UniversitätBochumGermany

Personalised recommendations