Thermoregulation and Energetics of Arctic Seabirds

  • Geir W. Gabrielsen
  • Fridtjof Mehlum
Part of the NATO ASI Series book series (ASIAS, volume 173)


Svalbard and the Barents Sea are inhabited by one of the largest concentrations of seabirds in the world, comprising several million birds (Løvenskiold 1964, Norderhaug et al. 1977). These birds constitute a major component of the marine ecosystem and form an important link between the terrestrial and marine ecosystem by transporting organic material and nutrients from sea to land.


Rest Metabolic Rate Allometric Equation Daily Energy Expenditure Standard Metabolic Rate Rock Ptarmigan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, N.J., and Brown, C.R. 1984. Metabolic rates of sub-Antarctic Procellariiformes: a comparative study. Comp Biochem Physiol, 77A: 169–173.CrossRefGoogle Scholar
  2. Aschoff, J., 1981. Thermal conductance in mammals and birds; Its dependence on body size and circadian phase. Comp Biochem Physiol, 69A: 611–619.CrossRefGoogle Scholar
  3. Aschoff, J., and Pohl, H., 1970. Der Ruheumsatz von Vögeln als Funktion der Tageszeit und der Körpergrösse. J. Orn, 111: 38–47CrossRefGoogle Scholar
  4. Bakken, V., and Mehlum, F., 1988. AKUP-Sluttrapport sjøfuglundersøkelser nord for N 74°/Bjørnøya. Norsk Polarinstitutt Rapportserie Nr 44.Google Scholar
  5. Benedict, F.G., 1934. Die Oberflächenbestimmung verschiedener Tiergattung. Ergeb. Physiol, 36: 300–346.CrossRefGoogle Scholar
  6. Drent, R.H., and Stonehouse, B., 1971. Thermoregulatory responses of the Peruvian penguin Sphensicus humboldti. Comp Biochem. Physiol, 40A: 689–710.CrossRefGoogle Scholar
  7. Drent, R.H., and Daan, S., 1980. The prudent parent energetic adjustments in avian breeding. Ardea, 68: 225–252Google Scholar
  8. Ellis, H.I. 1984. Energetics of free ranging seabirds. In: Whittow G.C., and Rahn, H. eds. Seabird energetics. Plenum Press, New York, London, pp 203–234.CrossRefGoogle Scholar
  9. Furness, R.W. 1978. Energy requirements of seabird communities: A bioenergetics model. J Anim Ecol, 47: 39–53.CrossRefGoogle Scholar
  10. Furness, R.W., and Barrett, R.T., 1985, The food requirements and ecological relationships of a seabird community in North Norway. Ornis Scand, 16: 305–313.CrossRefGoogle Scholar
  11. Gabrielsen, G.W., Mehlum, F., and Nagy K.A. 1987. Daily energy expediture and energy utilization of free ranging Black legged Kittiwakes (Rissa tvidactyla). Condor, 89: 126–132.CrossRefGoogle Scholar
  12. Gabrielsen, G.W., Mehlum, F. and Karlsen, H.E., 1988. Thermoregulation in four species of arctic seabirds. J Comp Physiol B, 157: 703–708.CrossRefGoogle Scholar
  13. Gabrielsen, G.W., Taylor, I., Konarzewski, M., and Mehlum, F., 1989. Thermorégulation, daily energy expediture and energy utilization in Little Auks (Alle alle). J. Comp. Physiol. B. (submitted).Google Scholar
  14. Gavrilov, V.M., 1985. Seasonal and circadian changes of thermoregulation in passerine and non-passerine birds; Which is more important? In: “Acta, XVIII Congressus Int. Ornithol”, V.D. Ilyichev, and V.M. Gavrilov, eds. vol. 2., Moscow Nauka, Moscow.Google Scholar
  15. Herreid, C.F. and Kessel, B., 1967. Thermal conductance in birds and mammals. Comp Biochem Physiol 21: 405–414.PubMedCrossRefGoogle Scholar
  16. Hüppop, O., 1987. Der Einfluss von Wachstum Thermoregulation und Verhalten auf den Energihaushalt der Silbermöwe (Lavus avgentatus, Pontoppidan, 1763). PhD thesis, Hamburg Universität.Google Scholar
  17. Johnson, S.R., and West, G.C., 1975. Growth and development of heat regulation in nestling and metabolism of adult common and Thickbilled murres. Ornis Scand. 6: 109–119.CrossRefGoogle Scholar
  18. Kendeigh, S.C., Dol’nik, V.R., and Gavrilov, V.M., 1977. Aivan energetics. In: J. Pinowski and S.C. Kendeigh eds. Granivorous birds in ecosystems. Cambridge University Press, Cambridge.Google Scholar
  19. Lasiewski, R.C. and Dawson, W.R., 1967. A re-examination of the relation between standard metabolic rate and body weight in birds. Condor 69: 13–23.CrossRefGoogle Scholar
  20. Lifson, N., and McClintock, R., 1966. Theory of use of the turnover rates of body water for measuring energy and material balance. J Theoret Biol, 12: 46–74.CrossRefGoogle Scholar
  21. Lustick, P.B.S., Battersby, B., and Kelty, M., 1978. Behavioral thermoregulation: orientation toward the sun in herring gull. Science, 200: 881–83.Google Scholar
  22. Løvenskiold, H.L. 1964. Avifauna Svalbardensis. Norsk Polarinstitutts Skrifter 129.Google Scholar
  23. Masman, D. and Klaassen, M. 1987. Energy expenditure during free flight in trained and free living Eurasian Kestrels (Falco tinnunculus). The Ank, 104: 603–616.Google Scholar
  24. Meeh, K., 1879. Oberflächen messungen des menschlichen körpers. Z. Biol. 15: 426–458.Google Scholar
  25. Mortensen, A., and Blix, A.S., 1985. Seasonal changes in resting metabolic rate and mass-specific conductance in Svalbard Ptarmigan, Norwegian Rock Ptarmigan and Norwegian Willow Ptarmigan. Ornis Scand, 17: 8–13.CrossRefGoogle Scholar
  26. Nagy,, K.A., 1980. CO2 production in animals: analysis of potential errors in the doubly labeled water method. Am J Physiol 238 (Reg Int Comp Physiol, 7): R466–R473.PubMedGoogle Scholar
  27. Nagy, K.A., and Costa, D.P., 1980. Water flux in animals: analysis of potential errors in the tritiated water method. Am J Physiol 238 (Reg Int Comp Physiol 7): R454–465.PubMedGoogle Scholar
  28. Norderhaug, M., Brun, E., and Uleberg Møller, G., 1977. Barentshavets sjøfuglressurser. Norsk Polarinstitutt Meddelelser Nr 104.Google Scholar
  29. Ricklefs, R.E., 1983. Some considerations on the reproductive energeticks of pelagic seabirds. Stud Avian Biol 8: 84–94.Google Scholar
  30. Roby, D.D., and Ricklefs, R.E., 1986. Energy expenditure in adult least auklets and diving petrels during the chick-rearing period. Physiol Zool 59: 661–678.Google Scholar
  31. Rosenheim, O., and Webster, T.A. 1927. The stomach oil of the fulmar petrel (Fulmarus glacialis). Biochem J 21: 11–118.Google Scholar
  32. Schmidt-Nielsen, K. 1975. In: Animal physiology: Adaption and environment. Cambridge University Press.Google Scholar
  33. Scholander, P.F., Hock, R., Walters, V., and Irving, L. 1950. Adaptation to cold in Arctic and tropical mammals and birds in relation to body temperature. Insulation and basal metabolic rate. Biol Bull, 99: 259–271.Google Scholar
  34. Walsberg, G.E., 1983. Avian ecological energetics, in: D.S. Farner, J.R. King and K.C. Parks, eds. Avian Biology, Vol. 7, Academic Press, New York.Google Scholar
  35. Weathers, W.W., 1979. Climate adaptions in avian standard metabolic rate. Qecologia 42: 81–89.Google Scholar
  36. West, G.C., 1972. Seasonal differences in resting metabolic rate of Alaskan ptarmigan. Comp. Biochem Physiol. 42A: 867–876.CrossRefGoogle Scholar
  37. Wiens, J.A, Scott, J.M., 1975. Model estimation of energy flow in Oregon coastal seabird populations. Condor 77: 439–452.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Geir W. Gabrielsen
    • 1
  • Fridtjof Mehlum
    • 1
  1. 1.Department of BiologyNorwegian Polar Research InstituteOslo LufthavnNorway

Personalised recommendations