Skip to main content

Heat Increment of Feeding in the Kestrel, Falco tinnunculus, and its Natural Seasonal Variation

  • Chapter

Part of the book series: NATO ASI Series ((ASIAS,volume 173))

Abstract

We measured the Heat Increment of Feeding (H) as the difference in oxygen consumption between the fed and fasting state in the kestrel at different ambient temperatures. Total H is a constant fraction of metabolizable energy intake and amounts to 16.6% of the energy assimilated. The effect of a meal was detected as elevation in metabolic rate lasting until 20 hours after the meal, independently of meal size. Below thermoneutral temperatures only part of H compensates for the cost of thermoregulation (T) up to a reallocation of 50% of H to T. Even at low temperatures (-12 °C) metabolic rate of fed kestrels is thus higher than that of fasting birds.

Using field data on daily metabolizable energy intake and meal-timing we conclude that average daily energy expenditure for H, after compensation for thermoregulation costs, varies from 7 % of daily energy expenditure in April to 15 % in August. Due to the habit of selecting sheltered roost sites, the nocturnal operative temperature is higher than that in daytime. Thereby the typical pattern of evening feeding, as observed in the kestrel during winter, can not be functionally explained by the reduction of total daily costs for thermoregulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bakken, G.S., W.A. Buttemer, W.R. Dawson and D.M. Gates. 1981. Heated taxidermic mounts: a means of measuring the standard operative temperature affecting small animals. Ecology 62: 311–318.

    Article  Google Scholar 

  • Beamish, F.W.H. 1974. Apparent Spesific Dynamic Action of Large mouth Bass, Micropterus salmoides. J. Fish. Res. Board Can. 31: 1763–1769.

    Article  Google Scholar 

  • Berman, A. and N.Snapir. 1965. The relation of fasting and resting metabolic rates to heat tolerance in the domestic fowl. Brit. Poultry Science 6: 207–216.

    Article  CAS  Google Scholar 

  • Biebach, H. 1977. Reduction des Energiestofwechsels und der Korpertemperatur hungernder Amseln (Turdus merdula). J. für Ornithologie 118(3): 294–300.

    Article  Google Scholar 

  • Biebach, H. 1984. Effect of clutch size and time of day on the energy expenditure of incubating Starlings (Sturnus vulgaris). Physiological Zoology 57(1): 26–31.

    Google Scholar 

  • Brody, S. 1945. Bioenergetics and growth. Reinold, New York.

    Google Scholar 

  • Buttemer, W.A. 1985. Energy relations of winter roost-site utilization by American Goldfinches (Carduelis tristis). Oecologia 68: 126–132.

    Article  Google Scholar 

  • Buttemer, W.A., A.H. Hayworth, W.W. Weathers and K.A. Nagy. 1986. Time-budget estimates of avian energy expenditure: Physiological and meteorological considerations. Physiol.Zool. 59: 131–149.

    Google Scholar 

  • Cave, A.J. 1968. The breeding of the kestrel, Falco tinnunculus, in the reclaimed area of Oostelijk Flevoland. Neth. J.Zool. 18: 313–407.

    Article  Google Scholar 

  • Chaplin, S.B., D.A. Diesel and J.A. Kasparie. 1984. Body temperature regulation in Red-tailed Hawks and Great-horned Owls: responses to air temperature and food deprivation. The Condor 86(2): 175–182.

    Article  Google Scholar 

  • Costa, D.P. & G.L. Kooyman. 1984. Contribution of Specific Dynamic Action to heat balance and thermoregulation in the Sea otter, Enhydra lutris. Physiological Zoology 57(2): 199–203.

    Google Scholar 

  • Daan, S. and J. Aschoff. 1982. Circadian contributions to survival. In: J.Aschoff, S.Daan and G.A.Groos (eds.). Vertebrate circadian systems. Springer Verlag, 305-321.

    Google Scholar 

  • Daan, S., D. Masman, A.Strijkstra and S.Verhulst. 1989. Intraspecific allometry of Basal Metabolic Rate: Relations with body size, temperature, composition and circadian phase in the kestrel, Falco tinnunculus. J. Biol. Rhythms (in press).

    Google Scholar 

  • Dijkstra, C. 1988. Reproductive tactics in the kestrel, Falco tinnunculus, a study in evolutionary biology. Ph.D.Thesis University of Groningen, The Netherlands.

    Google Scholar 

  • Gallivan, G.J. and K. Ronald. 1981. Aparent Specific Dynamic Action in the Harp Seal (Phoca groenlandica). Comp. Biochem. Physiol. 69A: 579–581.

    Article  Google Scholar 

  • Glasier, Ph. 1978. Falconry and Hawking. Bt. Batsford Ltd., London.

    Google Scholar 

  • Jobling, M. 1983. Towards an explanation of Specific Dynamic Action (SDA). J. Fish. Biol. 23: 549–555.

    Article  Google Scholar 

  • Kendeigh, S.C., V.R. Dolnik and V.M. Gavrilov. 1977. Avian energetics. In: J.Pinowski and S.C.Kendeigh (eds.). Granivorous birds in ecosystems. Cambridge University Press pp.127-377.

    Google Scholar 

  • King, J. 1974. Seasonal allocation of time and energy resources in birds. In: R.A.Paynter (ed.). Avian energetics. Nuttall Orn. Club, Cambridge, Mass. pp. 4-85.

    Google Scholar 

  • Kirkwood, J.K. 1981. Bioenergetics and growth in the kestrel (Falco tinnunculus). Ph.D. thesis, University of Bristol, UK.

    Google Scholar 

  • Klaassen, M., C. Bech and G. Slagsvold. 1989. Basal metabolic rate and thermal conductance in Arctic Tern chicks (Sterna paradisaea) and the effect of heat increment of feeding on thermoregulatory expenses, (in press).

    Google Scholar 

  • Kleiber, M. 1961. The fire of life, an introduction to animal energetics. R. E. Krieger Publ.Comp. Huntington, New York.

    Google Scholar 

  • Masman, D. 1986. The annual cycle of the kestrel, Falco tinnunculus. A study in behavioural energetics. PhD Thesis University of Groningen, The Netherlands.

    Google Scholar 

  • Masman, D.,M. Gordijn, S. Daan and C. Dijkstra. 1986. Ecological energetics of the European Kestrel: Field estimates of energy intake throughout the year. Ardea 74: 24–39.

    Google Scholar 

  • Masman, D. and M. Klaassen. 1987. Energy expenditure for free flight in trained and wild Kestrels, Falco tinnunculus. Auk 104: 603–616.

    Google Scholar 

  • Masman, D., S. Daan and C. Dijkstra. 1988a. Time allocation in the kestrel, Falco tinnunculus, and the principle of energy minimization. J. Anim. Ecol. 57: 411–432.

    Article  Google Scholar 

  • Masman, D., S. Daan and H.J.A. Beldhuis. 1988b. Ecological energetics of the Kestrel: Daily energy expenditure throughout the year based on Time-Energy Budget, Food Intake and Doubly Labeled Water methods. Ardea 76: 64–81.

    Google Scholar 

  • Meijer, T. 1988. Reproductive decisions in the kestrel, Falco tinnunculus: a study in physiological ecology. PhD. Thesis University of Groningen, The Netherlands.

    Google Scholar 

  • Mugaas, J.N. and J.R. King.1981. Annual variation of Daily Energy Expenditure by the Black-billed Magpie: A study of thermal and behavioural energetics. Studies in Avian Biology No.5, The Cooper Ornithological Society. Allan Press, Inc., Lawrence, Kansas.

    Google Scholar 

  • Ricklefs, R.E. 1974. Energetics of reproduction in birds. in: Avian Energetics. R.A.Paynter (ed.). Publ.Nuttall Ornith. Club no.15. Cambridge, Massachusetts.

    Google Scholar 

  • Rubner, M. 1910. Uber Kompensation und Summation von functionellen Leistungen des Korpers. Sitzungsberichte der Koniglichen Preussischen Akademie der Wissenchaften 1910: 316–324.

    Google Scholar 

  • Rijnsdorp, A., S. Daan and C. Dijkstra. 1981. Hunting in the Kestrel, Falco tinnunculus, and the adaptive significance of daily habits. Oecologia 50: 391–406.

    Article  Google Scholar 

  • Shapiro, C.J. and W.W. Weathers. 1981. Metabolic and behavioral responses of American Kestrels to food deprivation. Comp.Biochem.Physio1. 68A: 111–114.

    Article  Google Scholar 

  • Simek, V. 1975. Specific dynamic action of a high protein diet and its significance for thermoregulation in Golden Hamsters. Physiologia Bohemoslovaca 24: 421–424.

    PubMed  CAS  Google Scholar 

  • Simek, V. 1976. Influence of single administration of different diets on the energy metabolism at temperatures of 10, 20 and 30°C in the Golden Hamster. Physiologia Bohemoslovaca 25: 251–253.

    PubMed  CAS  Google Scholar 

  • Webster, A.J.F., P.O. Osuji, F. White and J.F. Ingram. 1975. The influence of food intake on portal blood flow and heat production in the digestive tract of sheep. Br. J. Nutr. 34: 125–139.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Masman, D., Daan, S., Dietz, M. (1989). Heat Increment of Feeding in the Kestrel, Falco tinnunculus, and its Natural Seasonal Variation. In: Bech, C., Reinertsen, R.E. (eds) Physiology of Cold Adaptation in Birds. NATO ASI Series, vol 173. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0031-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0031-2_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0033-6

  • Online ISBN: 978-1-4757-0031-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics