Advertisement

Effect of Severely Alkali-Treated Casein on Gastrointestinal Transit and Selected Intestinal Enzyme Activities

  • Bernard Possompes
  • Jacques Berger
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 199)

Abstract

Alkaline treatment of proteins leads to chemical changes which alter the proteins’ digestibility. Severely alkali-treated casein (0.2N NaOH, 80°C, 1 hour) in the diet reduces food intake and growth of young but not of adult Sprague Dawley rats. Gastrointestinal transit time is not reduced significantly in either young or adult rats.

Keywords

Small Intestine Dark Period Chromic Oxide Leucine Aminopeptidase Gastrointestinal Transit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, K., Arai, H., Homma, S., Fujimaki, M., Arai, S. (1981) Peptide bound lysinoalanine absorbed and transported to the kidney. Observations in a feeding test with rats. Agric. Biol. Chenu 45 (8), 1921–1923.CrossRefGoogle Scholar
  2. Abe, K., Homma, S., Fujimaki, M., Arai, S. (1984) Administration of lysinoalanine-containing proteins to rats and the characterization of their small intestinal contents. Agric. Biol. Chem. 48 (3), 573–578.CrossRefGoogle Scholar
  3. Abe, K., Suehara, S., Homma, S., Fujimaki, J., Arai, S. (1984) Metabolic transit of lysinoalanine in the rat body: observation of feeding tests with alkali-treated casein and gluten. Agric. Biol. Chem. 48 (3), 579–584.CrossRefGoogle Scholar
  4. Abidi, S.A., Kim, Y.S. (1981) Peptide absorption and hydrolysis. In: “Physiology of the gastrointestinal tract”, p. 1073–1095, ed. by Leonard R. Johnson, Raven Press, New York.Google Scholar
  5. Alpers, D.H., Tedusco, R.J. (1975) The possible role of pancreatic proteases on the turnover of intestinal brush border proteins. Biochem. Biophys. Acta. 401, 28–40.CrossRefGoogle Scholar
  6. Baker, D.H. (1979) Efficacity of D and L-isomers of N-acetylmethionine for chicks fed diets containing either crystalline amino acids or intact protein. J. Nutr. 109, 970–974.Google Scholar
  7. Batt, R.M., Bush, B.M., Peters, T.J. (1979) Biochemical changes in the jejunal mucosa of dogs with naturally occuring exocrine pancreatic insufficiency. GUT 20, 709–715.CrossRefGoogle Scholar
  8. Bert, C.P. (1959) Utilization of D amino acids. In: “Proteins and amino acid nutrition”, p. 57–96, ed. by Albanese, A.A., Academic Press, New York.Google Scholar
  9. Berger, J. (1983) Effets physiopathologiques dus à l’ingestion de protéines modifiées en milieu alcalin. Etude sur le pancréas endocrine et l’intestin chez le rat. Thèse de 3eme cycle, U.S.T.L., Montpellier.Google Scholar
  10. Bessey, O.A., Lowry, O.H., Brock, M. (1946) A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. J. Biol. Chem. 164, 321–329.Google Scholar
  11. Bolin, D.W., King, R.P., Klosterman, E.W. (1952) A simplified method for determination of chromic oxide (Cr2O3) when used as an index substance. Science 116, 634–635.CrossRefGoogle Scholar
  12. Castle, E.J. (1956) The rate of passage of foodstuffs through the alimentary tract of goat. I. Studies on the adult animal fed on hay and concentrates. Brit. J. Nutr. 10, 15–23.CrossRefGoogle Scholar
  13. Dahlquist, A. (1968) Assay of intestinal dissacharidases. Anal. Biochem. 22, 97–107.Google Scholar
  14. Das, M., Radhakrisnan, A.N. (1976) Role of peptidases and peptide transport in the intestinal absorption of protein. Wl. Rev. Nutr. Diet. 24, 58–87.Google Scholar
  15. DeGroot, A.P., Slump, P. (1969) Effects of severe alkali-treatments of proteins on amino acid composition and nutritive value. J. Nutr. 98, 45–56.Google Scholar
  16. Diaz, B.M. (1978) Etude des facteurs toxiques et de la valeur nutritionnelle d’isolats protéiques du haricot (Phaseolus vulgaris L): effets physiologiques chez le rat. Thèse de doctorat de spécialité, U.S.T.L., Montpellier.Google Scholar
  17. Francois, E., Compere, R., Rondia, G. (1968) Etude comparée de la vitesse de passage des aliments et des résidus alimentaires non digérés dans le tractus digestif du rat et du mouton. Bul. Rech. Agron. Gembloux 3 (4), 655–688.Google Scholar
  18. Friedman, M., Zahnley, T.C., Masters, P.M. (1981) Relationship between in vitro digestibility of casein and its content of lysinoalanine and D amino acids. J. Food Sci. 46, 127–131.CrossRefGoogle Scholar
  19. Friedman, M., Gros Jean, O-K, Zahnley, J.C. (1985) Metalloenzyme inhibition by lysinoalanine, phenylethylaminoalanine and alkali-treated food proteins. Fed. Proc, 44, 1497, See also, this volume.Google Scholar
  20. Ganote, E.E., Peterson, D.R., Carone, F.A. (1974) The nature of D-serine induced nephrotoxicity. Am. J. Pathol. 77, 269–282.Google Scholar
  21. Gibson, Q.H., Wiseman, G. (1951) Selective absorption of stereoisomers of amino acids from loops of the small intestine of the rat. Biochem. J. 48, 426–429.Google Scholar
  22. Goldbarg, J.A., Rutenburg, A.M. (1958) The colorimetric determination of leucine aminopeptidase in urine and serum of normal subjects and in patients with cancer and other diseases. Cancer 11, 283–291.CrossRefGoogle Scholar
  23. Gould, D.H., McGregor, J.T. (1977) Biological effects of alkali-treated protein and lysinoalanine: an overview. In: “Protein Crosslinking Nutritional and Medical Consequences”, p. 29–49, ed. by Friedman, M., Plenum Press, New York, London.Google Scholar
  24. Hayashi, R., Kameda, I. (1980a) Racemization of amino acid residues during alkalitreatment of protein and its adverse effect on peptide digestibility. Agric. Biol. Chem. 44 (4), 891–895.CrossRefGoogle Scholar
  25. Hayashi, R., Kameda, I. (1980b) Decreased proteolysis of alkalitreated protein: consequences of racemization in food processing. J. Food Sci. 45, 1430–1431.CrossRefGoogle Scholar
  26. Hayashi, R. (1982) Lysinoalanine as a metal chelator. J. Biol. Chem. 257 (23), 13896–13898.Google Scholar
  27. Hurrel, F.R., Carpenter, K.J. (1977) Nutritional significance of crosslink formation during food processing. In: “Protein crosslinking, nutritional and medical consequences”, p. 225–238, ed. by Friedman, M., Plenum Press, New York.Google Scholar
  28. Karasov, W.H., Diamond, J.M. (1983) Adaptive regulation of sugar and amino acid transport by vertebrate intestine. Am. J. Physiol. 245, G443–G462.Google Scholar
  29. Karayiannis, N., McGregor, J.T. (1976) Lysinoalanine content and biological effects of alkali-treated proteins. 172eme congres of American Chemical Society, San FranciscoGoogle Scholar
  30. Karayiannis, N., McGregor, J.T., Bjeldanes, L.F. (1979) Lysinoalanine formation in alkali-treated proteins and model peptides. Fd. Cosmet. Toxicol. 17, 585–590.CrossRefGoogle Scholar
  31. Kim, Y.S., Brophy, E.J., Nicholson, J.A. (1976) Rat intestinal brush border membrane peptidases. 2. Enzymatic properties, immunochemistry and interaction with lectins of two different forms of the enzyme. J. Biol. Chem. 251, 3206–3212.Google Scholar
  32. Laganiere, S., Berteldot, A., Maestracci, D. (1984) Digestive and absorptive functions along dog small intestine: comparative distributions in relation to biochemical and morphological parameters. Comp. Biochem. Physiol. 79A, 463–472.CrossRefGoogle Scholar
  33. Liardon, R., Hurrel, R.F. (1983) Amino acid racemization in heated and alkali-treated proteins. J. Agric. Food Chem. 31, 432–437.CrossRefGoogle Scholar
  34. Liener, I.E. (1981) Factors affecting the nutritional quality of soja projects. J. AOCS, 406–415.Google Scholar
  35. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951) Protein measurements with the folin-phenolreagent. J. Biol. Chem. 193, 265–275.Google Scholar
  36. Madara, J.L., Wolf, J.L., Trier, J.S. (1982) Structural features of the rat small intestinal microvillus membrane in acute experimental diabetes. Digest Dis. Sci. 27 (9), 801–806.CrossRefGoogle Scholar
  37. Mares-Guia, M., Shaw, E. (1965) Studies on the active center of trypsin. The binding of amidines and guanidines as models of the substrates side chain. J. Biol. Chem. 240, 1579–1585.Google Scholar
  38. Masters, P.M., Friedman, M. (1979) Racemization of amino acids in alkali-treated food proteins. Agric. Food Chem. 27 (3), 507–511.CrossRefGoogle Scholar
  39. Naftalin, P.M., Sexton, M., Whitaker, J.F., Tracey, D. (1969) A routine procedure for estimating γ-glutamyltranspeptidase activity. Clin. Chim. Acta. 26, 293–296.CrossRefGoogle Scholar
  40. Nakabou, Y., Okita, C., Takano, Y. (1974) Hyperplastic and hypertrophic changes of the small intestine in alloxan diabetic rats. J. Nutr. Sci. Vitaminol. 20, 227–234.CrossRefGoogle Scholar
  41. Nakabou, Y., Ishikawa, Y., Misake, A., Hagihira, H. (1980) Effect of food intake on intestinal absorption and mucosal hydrolazes in allaxan diabetic rats. Metabolism 29 (2), 181–185.Google Scholar
  42. Oste, R., Bjork, I. Dahlquist, A., Jagerstad, M., Sjodin, P., Sjostrom, H. (1983) Effect of glucose-lysine reaction mixture on protein and carbohydrate digestion and absorption in the Maillard reaction. In: “Food and Nutrition”, p. 405–419, ed. by Waller, G.R., Reather, M.S., ACS Symposium Series. American Chemical Society, Washington, D.C.Google Scholar
  43. Possompes, B., Vimont-Rispoli, S., Cabon, M., Besancon, P. (1979) Effet des traitements alcalins sévères sur la digestibilité in vivo et l’hydrolyse trypsique in vitro de la caséine. Ann. Nutr. Alim. 33, 539–543.Google Scholar
  44. Possompes, B., Diaz, B., Mahe, Y., Vimont-Rispoli, S., Besançon, P. (1982) Hydrolyse enzymatique de divers isolats protéiques de haricot: comportement des inhibiteurs. Sci. Aliments 2, 169–172.Google Scholar
  45. Possompes, B., Cuq, J.L, Guenoun, P., Besançon, P. (1983) Use of cysteine as a reducing agent during alkali treatment of proteins. Biochemical and nutritional effects. Food Chemistry 11, 15–26.CrossRefGoogle Scholar
  46. Possompes, B., Berger, J., Cuz, J.L. (1985) Traitement alcalin et inhibiteur de la trypsine: effet des supplémentations en acides aminés sur la croissance des rats. Journées Sciences des Aliments. Association Française de Nutrition, Paris.Google Scholar
  47. Raul, F., Simon, P.M., Kedinger, M., Grenier, J.F., Haffen, K. (1980) Effect of sucrose refeeding on dissacharidases and aminopeptidase activities of intestinal villus and crypt cells in adult rats. Evidence for a sucrose-dependent induction of sucrase in the crypt cells. Biochem. Biophys. Acta. 630, 1–9.CrossRefGoogle Scholar
  48. Possompes, B., Berger, J., Cuz, J.L. (1985) Traitement alcalin et inhibiteur de la trypsine: effet des supplémentations en acides aminés sur la croissance des rats. Journées Sciences des Aliments. Association Française de Nutrition, Paris.Google Scholar
  49. Raul, F., Simon, P.M., Kedinger, M., Grenier, J.F,. Haffen, K. (1980) Effect of sucrose refeeding on dissacharidases and aminopeptidase activities of intestinal villus and crypt cells in adult rats. Evidence for a sucrose-dependent induction of sucrase in the crypt cells. Biochem. Biophys. Acta. 630, 1–9.CrossRefGoogle Scholar
  50. Schwartz, D. (1963) Methodes statistiques a l’usage des medecins et des biologistes. Ed. Medicale Flammarion (Paris).Google Scholar
  51. Spector, M.H., Levine, G.M., Deren, J.J. (1977) Direct and indirect effects of dextrose and amino acids on gut man. Gastroenterology 72, 706–710.Google Scholar
  52. Stegink, L.D. (1977) D amino acids. In: “Clinical Nutrition Update: amino acids”, p. 198–205, American Medical Assoc., ed. by Greene, M.L., Holliday, M.A., Munro, H.N., Chicago.Google Scholar
  53. Struthers, B.J., Hopkins, D.T., Dahlgreen, R.P. (1978) Reversibility of nephrocytomegaly caused in rats by lysinoalanine (Nε−(D-L-2-amino-2-carboxcyethyl)-L-Lysine. J. Food Sci. 43, 616–618.CrossRefGoogle Scholar
  54. Vachon, C., Gauthier, S.F., Jones, J.D., Savoie, L. (1982) Enzymatic digestion method with dialysis to assess protein damage: application to alkali-treated protein containing lysinoalanine. Nutr. Res. 2, 675–688.CrossRefGoogle Scholar
  55. Vimont-Rispoli, S., Possompes, B., Besançon, P. (1980) Mise en évidence de la formation d’inactivateurs de la trypsine au cours des traitements alcalins des protéines. C.R. Acad. Sci. Paris 291, 945–948.Google Scholar
  56. Weser, E., Heller, R., Tawil, T. (1977) Stimulation of mucosa growth in the rat ileum by bile and pancreatic secretions after jejunal secretion. Gastroenterology 73, 524–529.Google Scholar
  57. Weser, E., Bell, D., Tawil, T. (1981) Effects of octapeptide-cholecystokinin, secretion and glucagon on intestinal mucosa growth in parenterally nourished rats. Digest. Dis. Sci. 26 (5), 409–416.CrossRefGoogle Scholar
  58. Weser, E., Vandeventer, A., Tawil, T. (1982) Non-hormonal regulation of intestinal adaptation. Scand. J. Gastroenterol. 17 (suppl. 74) 105–113.Google Scholar
  59. Williamson, R.C.N., Chir, M. (1978) Intestinal adaptation: structural, functional and cytokinetic changes. New England J. Med. 298 (25), 1393–1402.CrossRefGoogle Scholar
  60. Williamson, R.C.N., Chir, M. (1978) Intestinal adaptation: mechanisms of control. New England J. Med. 298 (25), 1444–1450.CrossRefGoogle Scholar
  61. Winne, D., Koff, S., Ulmer, M.L. (1979) Role of unstirred layer in intestinal absorption of phenylalanine in vivo. Biochem. Biophys. Acta. 550, 120–130.CrossRefGoogle Scholar
  62. Woodard, J.C., Short, D.D. (1973) Toxicity of alkali-treated soy protein in rats. J. Nutr. 103, 569–574.Google Scholar
  63. Yasumoto, K., Sugiyama, K., Mitsuda, H. (1977) Inhibition of amino acid transport in rat small intestine by Nε substituted-L-lysine derivatives. Agric. Biol. Chem. 41 (1), 195–200.CrossRefGoogle Scholar
  64. Zierler, K.L. (1958) A simplified explanation of the theory of indicator-dilution for measurement of fluid flow and volume and other distributive phenomena. Johns Hopkins Medical Journal. 103, 199–217.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Bernard Possompes
    • 1
  • Jacques Berger
    • 1
  1. 1.Laboratoire de Physiologie de la NutritionUniversite des Sciences et Techniques du LanguedocMontpellier CedexFrance

Personalised recommendations