Bajjalieh, N., Orf, J. H., Hymowitz, T. and Jensen, A.H. (1980). Response of young chicks to raw, defatted Kunitz trypsin inhibitor variant soybeans as sources of dietary protein. Poultry Sci., 59, 328–332.
CrossRef
CAS
Google Scholar
Bosterling, B. and Quast, U. (1981). Soybean trypsin inhibitor (Kunitz) is doubleheaded. Kinetics of the interaction of alpha-chymotrypsin with each side. Biochim. Biophys. Acta, 657, 58–72.
CrossRef
CAS
Google Scholar
Bates, R. P., Knapp, F. W. and Arajo, P. E. (1977). Protein quality of green-mature, dry mature and sprouted soybeans. J. Food Sci., 42, 271–272.
CrossRef
CAS
Google Scholar
Bau, H.M. and Debry, G. (1979). Germinated soybean protein products: chemical and nutritional evaluation. J. Am. Oil Chem. Soc., 56, 160–162.
CrossRef
CAS
Google Scholar
Birk, Y. (1985). The Bowman-Birk inhibitor. Int. J. Peptide Protein Res., 25, 113–131.
CrossRef
CAS
Google Scholar
Birk, Y., Gertler, A. and Khalef, S. (1963). A pure trypsin inhibitor from soya beans. Biochemical J., 87, 281–284.
CAS
Google Scholar
Brand, S.J. and Morgan, R.G.H. (1981). The release of rat intestinal cholecystokinin after oral trypsin inhibitor measured by bioassay. J. Physiol., 319, 325–343.
CAS
Google Scholar
Clark, R.W., Mies, D.W. and Hymowitz, T. (1970). Distribution of a trypsin inhibitor variant in seed proteins of soybean varieties. Crop Sci., 10, 486–487.
CrossRef
Google Scholar
Davis, B.J. 91964). Disc electrophoresis. II. Method and application to human serum proteins. Ann. N.Y. Acad. Sci., 121, 404–427.
Google Scholar
Figarella, C., Negri, G.A. and Guy, O. (1974). Studies on inhibition of two human trypsins. In “Bayer-Symposium V-Proteinase Inhibitors,” H. Fritz, H. Tschesche, L.J. Greene and E. Truscheit, Eds., pp. 213–222, Springer-Verlag, Berlin.
CrossRef
Google Scholar
Flavin, D.F. (1984). Soybean trypsin inhibitors: interaction in humans. Vet. Hum. Toxicol., 26, 36–37.
CAS
Google Scholar
Frattali, V. (1969). Soybean inhibitors. III. Properties of a low molecular weight soybean proteinase inhibitor. J. Biol. Chem., 25, 274–280.
Google Scholar
Freed, R.C. and Ryan, D.S. (1978). Note on the modification of the Kunitz soybean trypsin inhibitor during seed germination. Cereal Chem., 55, 534–538.
CAS
Google Scholar
Freed, R.C. and Ryan, D.S. (1980). Isolation and characterization of genetic variants of the Kunitz soybean trypsin inhibitor. Biochim. Biophys. Acta, 624, 562–572.
CrossRef
CAS
Google Scholar
Green, G.M. and Lyman, R.L. (1972). Feedback regulation of pancreatic enzymes secretion as a mechanism for trypsin inhibitor-induced hypersecretion in rats. Proc. Soc. Exp. Biol. Med., 140, 6–12.
CAS
Google Scholar
Green, G.M., Olds, B.A., Matthews, H. and Lyman, R.L. (1973). Protein as a regulator of pancreatic enzyme secretion in the rat. Proc. Soc. Exp. Biol. Med., 192, 1162–1167.
Google Scholar
Hammond, R.W., Foard, D.E. and Larkins, B.A. (1984). Molecular cloning and analysis of a gene coding for the Bowman-Birk protease inhibitor in soybean. J. Biol. Chem., 9883–9890.
Google Scholar
Harry, J.B. and Steiner, R.F. (1970). A soybean proeinase inhibitor. Thermodynamic and kinetic parameters of association with enzymes. Eur. J. Biochem., 16, 174–179.
CrossRef
CAS
Google Scholar
Hartl, P., Tan-Wilson, A.L. and Wilson, K.A. (1985). Proteolysis of Kunitz soybean trypsin inhibitor during germination. Phytochemistry, in press.
Google Scholar
Hirs, C.H.W. (1967). Performic acid oxidation. Methods Enzymol., 11, 199–203.
CrossRef
CAS
Google Scholar
Holm, H. and Krogdahl, A. (1982). Problems in predicting the inhibition of human pancreatic proteinases by soybean proteinase inhibitors. In vitro assays employing human, bovine and porcine proteinases. J. Sci. Food Agric., 33, 1164–1171.
CrossRef
CAS
Google Scholar
Hwang, D.L-R., Lin, K-T.D., Yang, W-K. and Foard, D.E. (1977). Purification, partial characterization, and immunological relationships of multiple low molecular weight protease inhibitors of soybean. Biochim. Biophys. Acta, 495, 369–382.
CrossRef
CAS
Google Scholar
Johnson, L.A., Devoe, C.W., Hoover, W.J. and Schwenke, J.R. (1980). Inactivation of trypsin inhibitors in aqueous soybean extracts by direct steam infusion. Cereal Chem., 57, 376–379.
CAS
Google Scholar
Kakade, M.L., Simons, N.R., Liener, I.E. and Lambert, J.W. (1972). Biochemical and nutritional assessment of different varieties of soybeans. J. Agric. Food Chem., 20, 87–90.
CrossRef
CAS
Google Scholar
Kakade, M.L., Hoffa, D.E. and Liener, I.E. (1974). Contribution of trypsin inhibitors to the deleterious effects of unheated soybeans fed to rats. J. Nutr., 103, 1772–1778.
Google Scholar
Kassell, B. (1970). Trypsin and chymotrypsin inhibitors from soybeans. Methods Enzymol., 9, 853–862.
CrossRef
Google Scholar
Kassell, B. and Laskowski, M. (1956). The comparative resistance to pepsin of six naturally occurring trypsin inhibitors. J. Biol. Chem., 219, 203–210.
CAS
Google Scholar
Katagiri, C. and Shimizu, M. (1983). Trypsin inhibitors of Kurodaizu (Glycine max Merrill forma Kuromame Makino) Part I. Separation and purification of trypsin inhibitors. Shokumotsu Gakkaishi, 38, 17–21.
CAS
Google Scholar
Kim, H-G., Kim, M-C., Chang, K-Y. and Kin, J-K. (1982). Trypsin inhibitors from various soybean varieties. Korean J. of Food Sci. and Technology, 14, 106–111.
CAS
Google Scholar
Koide, T. and Ikenaka, T. (1973). Studies on soybean trypsin inhibitors 3. Amino acid sequence of the carboxyl-terminal region and the complete amino acid sequence of the soybean trypsin inhibitor (Kunitz). Eur. J. Biochem., 32, 417–431.
CrossRef
CAS
Google Scholar
Konijn, A.M., Birk, Y. and Guggenheim, K. (1970). In vitro synthesis of pancreatic enzymes. Effect of soybean trypsin inhibitor. Am. J. Physiol., 218, 1113–1117.
CAS
Google Scholar
Krogdahl, A. and Holm, H. (1981). Soybean proteinase inhibitors and human proteolytic enzymes: selective inactivation of inhibitors by treatment with human gastric juice. J. Nutr., 111, 2045–2051.
CAS
Google Scholar
Krogdahl, A. and Holm, H. (1983). Pancreatic proteinases from man, trout, rat, pig, cow, chicken, mink, and fox. Enzyme activities and inhibition by soybean and lima bean proteinase inhibitors. Comp. Biochem. Physiol., B, 74B, 403–409.
CAS
Google Scholar
Kunitz, M. (1974). Isolation of a crystalline protein compound of trypsin and of soybean trypsin inhibitors. J. Gen. Physiol., 30, 311–320.
CrossRef
Google Scholar
Laskowski, M. and Kato, I. (1981). Protein inhibitors of proteinases. Ann. Rev. Biochem., 49, 583–626.
Google Scholar
Laskowski, M. and Sealock, R.W. (1971). Protein proteinase inhibitors — molecular aspects. In “The Enzymes”, 3rd ed., P.D. Boyer, Ed., pp. 376–473, Academic Press, New York.
Google Scholar
Lebowitz, J. and Laskowski, M. (1962). Potentiometric measurement of protein-protein association constants. Soybean trypsin inhibitor-trypsin association. Biochemistry, 1, 1044–1055.
CrossRef
CAS
Google Scholar
Madar, Z. (1979). Kinetics of native and modified Bowman-Birk soya bean trypsin inhibitor on growth and enzyme activities of the chick pancreas. J. Nutr., 42, 121–126.
CrossRef
CAS
Google Scholar
Madden, M.A., Tan-Wilson, A.L. and Wilson, K.A. (1985). Proteolysis of soybean Bowman-Birk trypsin inhibitor during germination. Phytochemistry, in press.
Google Scholar
Mallory, P.A. and Travis, J. (1973). Human pancreatic enzymes. Characterization of anionic human trypsin. Biochemistry, 12, 2847–2851.
CrossRef
CAS
Google Scholar
Mallory, P.A. and Travis, J. (1975). Inhibition spectra of the human pancreatic endopeptidases. Am. J. Clin. Nutr., 28, 823–830.
CAS
Google Scholar
Mancini, G., Carbonara, A.O. and Heremans, J.H. (1965). Immunochemi cal quantisation of antigens by single radial immunodiffusion. Immunochemistry, 2, 234–254.
CrossRef
Google Scholar
Melmed, R.N. and Bouchier, I.A.D. (1969). Further physiological role for naturally occurring trypsin inhibitors. Evidence for a trophic stimulant of the pancreatic acinar cell. Gut, 10, 973–979.
CrossRef
CAS
Google Scholar
Melmed, R.N., El-Aaser, A.A.A. and Holt, S.J. (1976). Hypertrophy and hyperplasia of the neonatal rat exocrine pancreas induced by orally administered soybean trypsin inhibitor. Biochim. Biophys. Acta, 421, 280–288.
CrossRef
CAS
Google Scholar
Oates, P.S., Bruce, N.W. and Morgan, R.G.H. (1984). Pancreatic blood flow in the rat during enlargement, involution and cholecystokinin treatment. Am. J. Physiol., 247, G457–G462.
CAS
Google Scholar
Odani, S. and Ikenaka, T. (1972). Studies on soybean trypsin inhibitors. IV. Complete amino acid sequence and the anti-proteinase sites of Bowman-Birk soybean proteinase inhibitor. J. Biochem., 71, 839–848.
CAS
Google Scholar
Odani, S. and Ikenaka, T. (1973a). Scission of soybean Bowman-Birk proteinase inhibitor into two small fragments having either trypsin or chymotrypsin inhibitory activity. J. Biochem., 74, 857–860.
CAS
Google Scholar
Odani, S. and Ikenaka, T. (1973b). Studies on soybean trypsin inhibitors. VIII. Disulfide bridges in soybean Bowman-Birk proteinase inhibitor. J. Biochem., 74, 697–715.
CAS
Google Scholar
Odani, S. and Ikenaka, T. (1977a). Studies on soybean trypsin inhibitors. X. Isolation and partial characterization of four soybean double-headed proteinase inhibitors. J. Biochem., 82, 1513–1522.
CAS
Google Scholar
Odani, S. and Ikenaka, T. (1977b). Studies on soybean trypsin inhibitors. XI. Complete amino acid sequence of soybean trypsin-chymotrypsin-elastase inhibitor, C-II. J. Biochem., 82, 1523–1531.
CAS
Google Scholar
Odani, S. and Ikenaka, T. (1978). Studies on soybean trypsin inhibitors. XII. Linear sequences of two soybean double-headed trypsin inhibitors, D-II and E-I. J. Biochem., 83, 737–745.
CAS
Google Scholar
Orf, J.H. and Hymowitz, T. (1979). Genetics of the Kunitz trypsin inhibitor: an antinutritional factor in soybeans. J. Am. Oil Chem. Soc., 56, 722–726.
CrossRef
CAS
Google Scholar
Orf., J.H., Mies, D.W. and Hymowitz, T. (1977). Qualitative changes of the Kunitz trypsin inhibitor in soybean seeds during germination as detected by electrophoresis. Bot. Gaz., 138, 255–260.
CrossRef
CAS
Google Scholar
Rackis, J.J. (1965). Physiological properties of soybean trypsin inhibitors and their relationship to pancreatic hypertrophy and growth inhibition of rats. Fed. Proc., 24, 1488–1493.
CAS
Google Scholar
Rackis, J.J. (1974). Biological and physiological factors in soybeans. J. Amer. Oil Chem. Soc. 51, 161A–174A.
CrossRef
CAS
Google Scholar
Rackis, J.J. and Gumbmann, M.R. (1981). Protease inhibitors: physiological properties and nutritional significance. In “Antinutrients and Natural Toxicants in Foods,” R.L. Ory, Ed., pp. 203–237, Food and Nutrition Press, Westport, Conn.
Google Scholar
Richardson, M. (1977). The proteinase inhibitors in plants and microorganisms. Phytochemistry, 16, 159–169.
CrossRef
CAS
Google Scholar
Ryan, C.A. (1973). Proteolytic enzymes and their inhibitors in plants. Ann. Rev. Plant Physiol., 24, 173–196.
CrossRef
CAS
Google Scholar
Schwert, G.W. and Takenaka, Y. (l955). A spectrophotometric determination of trypsin and chymotrypsin. Biochim. Biophys. Acta, 16, 570–575.
CrossRef
Google Scholar
Seidl, D.S. and Liener, I.E. (1971). Identification of the trypsinreactive site of the Bowman-Birk soybean inhibitor. Biochim. Biophys. Acta, 251, 83–93.
CrossRef
CAS
Google Scholar
Seidl, D.S. and Liener, I.E. (1972a). Identification of the chymotrypsin-reactive site of the Bowman-Birk soybean inhibitor. Biochim. Biophys. Acta, 258, 303–309.
CrossRef
CAS
Google Scholar
Seidl, D.S. and Liener, I.E. (1972b). Isolation and properties of complexes of the Bowman-Birk soybean inhibitor with trypsin and chymotrypsin. J. Biol. Chem., 247, 3533–3538.
CAS
Google Scholar
Silva, A.D., Barbosa, C.F. and Portela, F. (1979). Inibidores proteoliticos em variedades de soja. Cientifica, 7, 317–320.
CAS
Google Scholar
Simpson, R.J., Neuberger, M.R. and Liu, T-Y. (1976). Complete amino acid analysis of proteins from a single hydrolysate. J. Biol. Chem., 251, 1936–1940.
CAS
Google Scholar
Singh, L., Wilson, C.M. and Hadley, H.H. (1969). Genetic differences in soybean trypsin inhibitors separated by disc electrophoresis. Crop Sci., 9, 489–491.
CrossRef
CAS
Google Scholar
Stahlhut, R.W. and Hymowitz, T. (1983). Variation in the low molecular weight proteinase inhibitors of soybeans. Crop Sci., 23, 766–769.
CrossRef
CAS
Google Scholar
Struthers, B.J. and MacDonald, J.R. (1983). Comparative inhibition of trypsins from several species by soybean trypsin inhibitors. J. Nutr., 113, 800–804.
CAS
Google Scholar
Staswick, R.E., Hermodson, M.A. and Nielsen, N.C. (1981). Identification of the acidic and basic subunit complexes of glycinin. J. Biol. Chem., 256, 8752–8755.
CAS
Google Scholar
Tan-Wilson, A.L. and Wilson, K.A. (1982). Nature of proteinase inhibitors released from soybeans during imbibition and germination. Phytochemistry, 21, 1547–1551.
CAS
Google Scholar
Tan-Wilson, A.L., Rightmire, B.R. and Wilson, K.A. (1982). Different rates of metabolism of soybean proteinase inhibitors during germination. Plant Physiol., 70, 493–497.
CrossRef
CAS
Google Scholar
Tan-Wilson, A.L., Rightmire, B.R. and Wilson, K.A. (1983). Determination of relative antigen-antibody avidities by radial immunodiffusion. J. Immunol. Methods, 61, 99–106.
CrossRef
CAS
Google Scholar
Tan-Wilson, A.L., Hartl, P., Delfel, N.E., and Wilson, K.A. (1985a). Differential expression of Kunitz and Bowman-Birk soybean proteinase inhibitors in plant and callus tissue. Plant Physiol., 78, 310–314.
CrossRef
CAS
Google Scholar
Tan-Wilson, A.L., Cosgriff, S.E., Duggan, M.C., Obach, R.S. and Wilson, K.A. (1985). Bowman-Birk proteinase isoinhibitor complements of soybean strains. J. Agric. Food Chem., 133, 389–393.
CrossRef
Google Scholar
Thanh, V.H. and Shibasaki, K. (1977). Beta-conglycinin from soybean proteins. Isolation and immunological and physiochemical properties of the monomeric forms. Biochim. Biophys. Acta, 490, 370–384.
CrossRef
CAS
Google Scholar
Travis, J. and Roberts, R. (1969). Human trypsin isolation and physical chemical characterization. Biochemistry, 8, 2884–2889.
CrossRef
CAS
Google Scholar
Turner, R., Liener, I.E. and Lovrien, R.E. (1975). Equilibria of Bowman-Birk inhibitor association with trypsin and alpha-chymotrypsin. Biochemistry, 14, 275–282.
CrossRef
CAS
Google Scholar
Wilson, K.A. (1981). The structure, function and evolution of legume proteinase inhibitors. In “Antinutrients and Natural Toxicants in Foods,” R. L. Ory, Ed., pp. 187–202, Food and Nutrition Press, Westport, Conn.
Google Scholar
Wilson, K.A. and Chen, J.C. (1983). Amino acid sequence of mung bean trypsin inhibitor and its modified forms appearing during germination. Plant Physiol., 71, 341–349.
CrossRef
CAS
Google Scholar
Wilson, K.A. and Laskowski, M. (1975). The partial amino acid sequence of trypsin inhibitor II from garden bean, Phaseolus vulgaris, with location of the trypsin and elastase reactive sites. J. Biol. Chem., 250, 4261–4267.
CAS
Google Scholar
Wilson, K.A. and Tan-Wilson, A.L. (1983). Proteinases involved in the degradation of trypsin inhibitor in germinating mung beans. Acta Biochim. Pol., 30, 139–148.
CAS
Google Scholar
Wilson, K.A., Rightmire, B.R. and Tan-Wilson, A.L. (1985). Involvement of carboxypeptidase in the degration of the mung bean (Vigna radiata) trypsin inhibitor during germination and early seedling growth. Qual. Plant. Plant Foods Hum. Nutr., in press.
Google Scholar
Yen, J.T., Hymowitz, T., and Jensen, A.H. (1971). Utilization by rats of protein from a trypsin-inhibitor variant soybean. J. Anim. Sci., 33, 1012–1017.
CAS
Google Scholar
Yen, J.T., Jensen, A.H., and Simon, J. (1977). Effect of dietary raw soybean and soybean trypsin inhibitor on trypsin and chymotrypsin activities in the pancreas and in small intestinal juice of growing swine. J. Nutr., 107, 156–165.
CAS
Google Scholar
Yoshikawa, M., Kiyohara, T., Iwasaki, T. and Yoshida, I. (1979). Modification of proteinase inhibitor II in adzuki beans during germination. J. Agric. Food Chem., 43, 1989–1990.
CAS
Google Scholar