Nutritional Improvement of Legume Proteins through Disulfide Interchange

  • Mendel Friedman
  • Michael R. Gumbmann
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 199)


Treatment of raw soy flour with L-cysteine or N-acetyl-L-cysteine results in the introduction of new half-cystine residues into sulfur-poor legume proteins, with a corresponding improvement in nutritional quality as measured by the protein efficiency ratio (PER) in rats. The proteins are modified through formation of mixed disulfide bonds among added sulfhydryl compounds, proteolytic enzyme inhibitors, and structural legume proteins. This modification leads to loss of inhibitory activity and increased protein digestibility and nutritive value. Sodium sulfite is more effective than cysteine in facilitating inactivation of trypsin inhibitors in soy flour. The synergistic effect of sodium sulfite and heat may be due to (1) ability to induce rearrangement of protein disulfide bonds to produce new structural entities without altering the amino acid composition and to (2) the fact that the new structures lose their ability to complex with trypsin or chymotrypsin. The same treatment inactivated hemagglutinins (lectins) in lima bean flour. These considerations suggest a key role for sulfur amino acids in the nutritional quality and safety of legumes.


Disulfide Bond Trypsin Inhibitor Lima Bean Soybean Trypsin Inhibitor Protein Efficiency Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, R. L., Rackis, J. J., and Tallent, W. H. (1979). Biologically active substances in soy proteins. In: “Soy Protein and Human Nutrition”, H. L. Wilcke, D. T. Hopkins, and D. H. Waggle, eds., Academic Press, New York, p. 209–233.Google Scholar
  2. Anfinsen, C. B. (1972). The formation and stabilization of protein structure. Biochem. J., 128, 737–749.Google Scholar
  3. Antunes, P. L. and Sgarbieri, V. C. (1980). Effect of heat treatment on the toxicity and nutritive value of dry bean (Phaseolus vulgaris) protein. J. Agric. Food Chem., 28, 935–938.CrossRefGoogle Scholar
  4. Asquith, R. S. and Otterburn, M. S. 1977. Cystine-alkali reactions in relation to protein crosslinking. In: “Protein Crosslinking: Nutritional and Medical Consequences”, M. Friedman, ed., Plenum, New York, pp. 93–122.Google Scholar
  5. AOAC (1980). “Official Methods of Analysis”, 13th Edition. Assoc. of Official Analytical Chemists, Washington, D.C.Google Scholar
  6. Baker, G. C. and Mustakas, G. C. (1973). Heat inactivation of trypsin inhibitor lipoxygenase and urease in soybeans: effect of acid and base additives. J. Am. Oil Chem. Soc., 50, 137.CrossRefGoogle Scholar
  7. Baker, E. C. and Rackis, J. J. (1986). Preparation of unheated soy protein isolates with low trypsin inhibitor content. This volume.Google Scholar
  8. Barnes, R. H., Fiala, G., and Kwong, E. (1962). Methionine supplementation of processed soybeans in the rat. J. Nutrition. 77, 278–284.Google Scholar
  9. Barnes, R. H., Fiala, G., and Kwong, E. (1965a). Prevention of coprophagy in the rat and the growth-stimulating effects of methionine, cystine and penicillin when added to diets containing unheated soybeans. J. Nutrition, 86, 127–131.Google Scholar
  10. Barnes, R. H., Kwong, E., and Fiala, G. (1965b). Effect of penicillin added to an unheated soybean diet on cystine excretion in feces of the rat. J. Nutrition, 85, 123–126.Google Scholar
  11. Benevenga, N. J. (1977). Toxicities of methionine and other amino acids. J. Agric. Food Chem., 25, 2–9.Google Scholar
  12. Birk, Y. (1985). The Bowman-Birk inhibitor. Trypsin- and chymotrypsininhibitor from soybeans. Int. J. Peptide Protein Res., 25, 113–121.CrossRefGoogle Scholar
  13. Birk, Y. (1976a). Proteinase inhibitors of legumes seeds. Methods Enzymol., 45B, 697–700.CrossRefGoogle Scholar
  14. Birk, Y. (1976b). Trypsin isoinhibitors from garden beans (Phaseolus vaulgaris). Methods Enzymol., 45B, 710–716.CrossRefGoogle Scholar
  15. Birk, Y. (1976c). A trypsin and chymotrypsin inhibitor from groundnuts (Arachis hypogea). Methods Enzymol., 45B, 716–722.CrossRefGoogle Scholar
  16. Birk, Y. (1976d). Trypsin and chymotrypsin inhibitors from soybeans. Methods Enzymol., 45B, 700–707.CrossRefGoogle Scholar
  17. Boisen, S., Anderson, C. Y., and Hejgaard, J. (1981). Inhibitors of chymotrypsin and microbial serine proteases in barley grains. Plant Physiol., 52, 167–176.CrossRefGoogle Scholar
  18. Boonivust, S. and Whitaker, J. R. (1976). Effect of heat, amylase and disulfide bond cleavage on the in vitro digestibility of soybean proteins. J. Agric. Food Chem., 24, 1130–1135.CrossRefGoogle Scholar
  19. Borchers, R. (1962). Supplementary methionine requirement of weanling rats fed soybean oil meal. J. Nutrition, 77, 309–311.Google Scholar
  20. Borchers, R., Mange, L. D., Nelson, S. O., and Stetson, L. E. (1972). Rapid improvement in nutritional quality of soybeans by dielectric heating. J. Food Sci., 37, 333–334.CrossRefGoogle Scholar
  21. Bozzini, A. and Silano, V. (1978). Control through breeding methods of factors affecting nutritional quality of cereals and legumes. In: “Nutritional Improvement of Food and Feed Proteins”, M. Friedman, ed., Plenum, New York, pp. 249–274.CrossRefGoogle Scholar
  22. Bradbury, J. H., Hammer, B., Nguyen, T., Anders, N., and Millar, J. S. (1985). Protein quantity and quality and trypsin inhibitor content of sweet-potato cultivars from the highlands of Papua New-Guinea. J. Agric. Food Chem., 33. 281–285.CrossRefGoogle Scholar
  23. Brandon, D. L., Haque, S., and Friedman, M. (1985). Antigenicity of native and modified Kunitz soybean trypsin inhibitors. Abstracts 7th European Immunology Meeting, Jerusalem, Israel, September 8–13, 1985. See also this volume.Google Scholar
  24. Buera, M. P., Pilosof, A. M. R., and Bartholomai, G. B. (1984). Kinetics of trypsin inhibitor activity loss in heated flour from bean, Phaseolus vulgaris. J. Food Sci., 49, 124–126, 136.CrossRefGoogle Scholar
  25. Buonocore, V. and Silano, V. (1986). Biochemical nutritional and toxicological aspects of alpha-amylase inhibitors from plant foods. This volumeGoogle Scholar
  26. Burr, H. K. (1975). Pulse proteins. in: “Protein Nutritional Quality of Foods and Feeds”, M. Friedman, ed., Marcel Dekker, New York, Part 2, pp. 119–134.Google Scholar
  27. Carol, R. W., Hensly, G. W., Sittler, C. L., Wilcox, E. L., and Graham, Jr., W. R. (1953). Absorption of nitrogen and amino acids from soybean meal as affected by heat treatment or supplementation with aureomycin and methionine. Archiv. Biochem. Biophys., 45., 260–266.CrossRefGoogle Scholar
  28. Chae, B. J., Han, I. K., and Lee, S. C. (1984). Effect of heat treatment on amino acid bioavailability of soybean meal for broiler type chicks. Korean J. Animal Sci., 26, 558–562.Google Scholar
  29. Chang, C. R. and Tsen, C. C. (1981a). Isolation of trypsin from rye, triticale, and wheat samples. J. Food Sci., 58, 207–210.Google Scholar
  30. Chang, C.R. and Tsen, C. C. (1981b). Characterization and heat stability of trypsin inhibitors from rye, triticale, and wheat samples. J. Food Sci., 58, 211–213.Google Scholar
  31. Chase, T., Jr. and Shaw, E. 1970. Titration of trypsin, plasmin, and thrombin with p-nitrophenyl-p’-guanidinobenzoate HCl. Methods Enzymol., 19, 20–27.CrossRefGoogle Scholar
  32. Collins, J. L. and Beaty, B. F. (1980). Heat inactivation of trypsin inhibitor in fresh green soybeans and physiological responses of rats fed the beans. J. Food Sci., 45, 542–546.CrossRefGoogle Scholar
  33. Craviato, R. (1951). Majorammeinto del valor nutritive de la tortilla Ciencia (Mexico). 11, 81.Google Scholar
  34. Creighton, T. E. (1975). The two-disulfide intermediates and the folding pathways of reduced pancreatic trypsin inhibitor. J. Mol. Biol., 95, 167–199.CrossRefGoogle Scholar
  35. de Lumen, B. O. and Chan, J. (1986). Antinutritional and biochemical properties of winged bean trypsin inhibitors. This volume.Google Scholar
  36. Doyle, P. T. and Adams, N. R. (1980). Toxic effects of large amounts of DL-methionine infused into the rumen of sheep. Austral. Veterinary Journal, 56, 331–334.CrossRefGoogle Scholar
  37. Duncan, D. B. (1959). Multiple range and multiple tests. Biometrics, 11, 1–45.CrossRefGoogle Scholar
  38. Ellenrieder, G., Geronazzo, H., and De Bojarski, A. B. (1980). Thermal inactivation of trypsin inhibitors in aqueous extracts of soybeans, peanuts, and kidney beans: presence of substances that accelerate inactivation. Cereal Chem., 57., 25–27.Google Scholar
  39. Ellman, G. L. (1959). Tissue sulfhydryl groups. Archiv. Biochem. Biophys., 82, 70–77.CrossRefGoogle Scholar
  40. Erlanger, B. F., Kokowsky, N., Cohen, W. (1961). The preparation and properties of two new chromogenic substrates of trypsin. Archiv. Biochem. Biophys., 95, 271–278.CrossRefGoogle Scholar
  41. Evans, R. J., McGinnis, J., and St. John, J. L. (1947). The influence of autoclaving soybean oil meal on the digestibility of the proteins. J. Nutrition, 33, 661–672.Google Scholar
  42. Evans, R. J. and McGinnis, J. (1948). Cystine and methionine metabolism by chicks receiving raw or autoclaved soybean oil meal. J. Nutrition. 35., 477–488.Google Scholar
  43. Filho, J. M. (1974). Trypsin inhibitors in sorghum grain. J. Food Sci., 39, 422–423.CrossRefGoogle Scholar
  44. Fraenkel-Conrat, H., Bean, R. C., Ducay, E. D., and Olcott, H. S. (1952). Isolation and characterization of a trypsin inhibitor from lima beans. Archiv. Biochem. Biophys., 37, 393–407.CrossRefGoogle Scholar
  45. Friedman, M. (1973). “The Chemistry and Biochemistry of the Sulfhydryl Group in Amino Acids, Peptids, and Proteins”, Pergamon Press, Oxford, England and Elmsford, New York, Chapters 3, 8, and 10.Google Scholar
  46. Friedman, M. (1977). Chemical basis for pharmacological and therapeutic actions of penicillamine. Proc. Royal Soc. Medicine (supplement 3), 70, 50–60.Google Scholar
  47. Friedman, M. (1984). Sulfhydryl groups and food safety. Adv. Exp. Med. Biol., 177, 31–63.CrossRefGoogle Scholar
  48. Friedman, M., Grosjean, O. K., and Zahnley, J. C. (1982a). Cooperative effects of heat and thiols in inactivating trypsin inhibitors from legumes in solution and in the solid state. Nutr. Repts. Int., 25., 743–751.Google Scholar
  49. Friedman, M., Grosjean, O.K., and Zahney, J. C. (1982b). Inactivation of soybean inhibitors by thiols. J. Sci. Food Agric. 33, 165–172.CrossRefGoogle Scholar
  50. Friedman, M., Grosjean, O. K., and Zahnley, J. C. (1982c). Effect of disulfide bond modification on the structure and activities of enzyme inhibitors. In: “Mechanism of Food Protein Deterioration”, J. P.Cherry, ed., ACS Symposium Series, Washington, D. C. 206, 359–407Google Scholar
  51. Friedman, M. and Gumbmann, M. R. (1984). The utilization and safety of isomeric sulfur-containing amino acids in mice. J. Nutrition. 114. 2301–2310.Google Scholar
  52. Friedman, M. and Gumbmann, M. R. (1985). Isomeric methionine dipeptides as a nutritional source of methionine. Abstracts, 190th American Chemical Society Meeting, Chicago, IllinoisGoogle Scholar
  53. Friedman, M., Gumbmann, M. R., and Grosjean, O. K. (1984a). Nutritional improvement of soy flour. J. Nutrition. 114. 2241–2246.Google Scholar
  54. Friedman, M., Gumbmann, M. R., and Masters, P. M. (1984b). Protein-alkali reactions: chemistry, toxicology, and nutritional consequences. Adv. Exp. Med. Biol., 177. 367–412.CrossRefGoogle Scholar
  55. Friedman, M. and Smith, G. A. (1984). Inactivation of quercetin mutagenicity. Food Chem. Toxicol., 22., 535–539.Google Scholar
  56. Friedman, M., Noma, A. T., and Wagner, J. R. (1979). Ion-exchange chromatography of sulfur amino acids on a single-column amino acid analyzer. ai]Friedman, M., Noma, A. T., and Wagner, J. R. (1979). Ion-exchange chromatography of sulfur amino acids on a single-column amino acid analyzer. Anal. Biochem., 98, 293–304CrossRefGoogle Scholar
  57. Friedman, M., Wehr, C. M., Schade, J. E., and MacGregor, J. T. (1982d). Inactivation of aflatoxin B1 mutagenicity by thiols. Food Chem. Toxicol., 20, 887–892.CrossRefGoogle Scholar
  58. Friedman, M., Zahnley, J. C., and Wagner, J. R. (1980). Estimation of the disulfide content of trypsin inhibitors as S-β-(2-pyridylethyl)-L-cysteine. Anal. Biochem., 106, 27–34.CrossRefGoogle Scholar
  59. Friedman, M., Zahnley, J. C., and Masters, P. M. (1981). Relationship between in vitro digestibility of casein and its content of lysinoalanine and D-amino acids. J. Food Sci., 46, 127–131.CrossRefGoogle Scholar
  60. Frost, A. and Mann, G. V. (1966). Effect of cystine deficiency and trypsin inhibitor on the metabolism of methionine. J. Nutrition. 89, 49–54.Google Scholar
  61. Gallaher, D. and Schneeman, B. O. (1984). Nutritional and metabolic response to plant inhibitors of digestive enzymes. In: “Nutritional and Toxicological Aspects of Food Safety”, M. Friedman, ed., Plenum Press, New York, pp. 299–322. See also this volume.CrossRefGoogle Scholar
  62. Goldstein, I. J. and Hayes, C. E. (1978). The lectins: carbohydrate binding proteins of plants and animals. Adv. Carbohydrate Chem. and Biochem., 35, 127.CrossRefGoogle Scholar
  63. Grant, G., Greer, F., McKenzie, N. H., and Pusztai, A. (1985). Nutritional response of mature rats to kidney bean (Phaseolus vulgaris) lectins. J. Sci. Food Agric. 36, 409–414.CrossRefGoogle Scholar
  64. Gupta, H. O., Lodha, M. L., Sen. K., Joginder, S., and Mehta, S. L. (1979). Protein, lipid, mineral and trypsin inhibitor content in modified opaque-2 maize. J. Food Sci. Technol. (India). 16, 1.Google Scholar
  65. Hackler, L. R., Van Buren, J. P., Steinkraus, K. H., El Rawi, I., and Hand, D. B. (1965). Effect of heat treatment on nutritive value of soy milk protein fed to weanling rats. J. Food Sci., 30, 723–728.CrossRefGoogle Scholar
  66. Hammerstrand, G. E., Black, L. T., and Glover, J. D. (1981). Trypsin inhibitors in soy products: modification of the standard analytical procedure. Cereal Chem., 58., 42–45.Google Scholar
  67. Hawkins, H. C. and Freedman, R. B. (1975). Randomly reoxidized soybean trypsin inhibitor and the possiblity of conformational barriers to disulfide isomerization in proteins. FEBS Letters. 58, 7–11.CrossRefGoogle Scholar
  68. Hayward, J. W. and Hafner, F. H. (1941). The supplementary effect of cystine and methionine upon the protein of raw and cooked soybeans as determined with chicks and rats. Poultry Science, 20, 139–150.CrossRefGoogle Scholar
  69. Hayward, J. W., Steenbeck, H., and Bohsted, G. (1936). The effect of cystine and casein supplements upon the nutritive value of the protein of raw and heated soy beans. J. Nutrition. 12, 275–283.Google Scholar
  70. Heinrikson, R. L. and Kezdy, F. J. (1976). Acidic cysteine protease inhibitors from pineapple stem. Methods Enzymol., 45B, 740–751.CrossRefGoogle Scholar
  71. Hochstrasser, K., Illchmann, K. K., and Werle, E. (1970). Plant protease inhibitors. Amino acid sequence of specific trypsin inhibitors from maize, characteristics of the polymer. Z. Physiol. Chem., 351. 721–728.CrossRefGoogle Scholar
  72. Hojima, Y., Moriwaki, C., and Moriya, H. (1973). Studies of kallikrein inhibitors from potatoes. Characterization of two isolated inhibitors. J. Biochem. (Tokyo). 73, 933–943.Google Scholar
  73. Hymowitz, T. (1986). Genetics and breeding of soybeans lacking the Kunitz trypsin inhibitor. This volume.Google Scholar
  74. Iwasaki, T., Iguchi, I., Kiyohara, T., and Yoshikawa, M. (1974). Digestibility of the active fragment of potato proteinase inhibitor IIa by bovine chymotrypsin and a bacterial proteinase. J. Biochem. (Tokyo). 75, 1387–1390.Google Scholar
  75. James, K. A. and Hove, E. L. (1980). The ineffectivness of supplementary cystine in legume-based diets. J. Nutrition. 110. 1736–1744.Google Scholar
  76. Jones, G., Moore, S., and Stein, W. H. (1963). Properties of chromatographically purified trypsin inhibitors from lima beans. Biochemistry. 2, 66–71.CrossRefGoogle Scholar
  77. Kakade, M. L., Arnold, R. L., Liener, I. E., and Waibel, P. E. (1969). Unavailability of cystine from trypsin inhibitors as a factor contributing to the poor nutritive value of navy beans. J. Nutrition. 99, 34–42.Google Scholar
  78. Kakade, M. L., Rackis, J. J., McGhee, J. E., and Puski, G. (1974). Determination of trypsin inhibitor activity of soy products: a collaborative analysis of an improved procedure. Cereal Chem., 51, 376–382.Google Scholar
  79. Kamalakannan, V. and Motlag, D. B. (1982). Influence of dietary black gram trypsin inhibitor on the growth rate and nitrogen absorption in male albino mice. Nutr. Repts. Int., 25, 113–125.Google Scholar
  80. Kunitz, M. (1948). The kinetics and thermodynamics of reversible denaturation of crystalline soybean trypsin inhibitor. J. Gen. Physiol., 32, 241–263.CrossRefGoogle Scholar
  81. Kwong, E. and Barnes, R. H. (1963). Effect of soybean trypsin inhibitor on methionine and cystine utilization. J. Nutrition. 81, 392–398.Google Scholar
  82. Leveille, G. A., Sauberlich, H. E., and Shockley, J. W. (1961). Sulfur amino acid requirements for growth of mice fed two levels of nitrogen. J. Nutrition. 75, 455–458.Google Scholar
  83. Liener, I. E. (1974). Phytohemagglutinins: their nutritional significance. J. Agric. Food Chem., 22, 17–22.CrossRefGoogle Scholar
  84. Liener, I. E. (1975). Effects of antinutritional and toxic factors on the quality and utilization of legume proteins. In: “Protein Nutritional Quality of Foods and Feeds”, M. Friedman, ed., Marcel Dekker, New York, Part 2, pp. 523–550.Google Scholar
  85. Liener, I. E., Deuel, H. H., and Fevold, H. L. (1949). The effect of supplemental methionine on the nutritive value of diets containing concentrates of the soybean trypsin inhibitor. J. Nutrition. 38, 325–339.Google Scholar
  86. Liener, I. E. and Kakade, M. (1980). Protease inhibitors. In: “Toxic Constituents of Plant Foodstuffs”, I. E. Liener, ed., 2nd Edition, Academic Press, New York, pp. 7–57.Google Scholar
  87. Lineweaver, H. and Murray, C. W. (1949). Identification of the trypsin inhibitor of egg white with ovomucoid. J. Biol. Chem., 171, 565–581.Google Scholar
  88. Lis, H. and Sharon, N. (1981). Lectins in higher plants. In: “The Biochemistry of Plants”, A. Marcus, ed., Academic Press, New York, Chapter 10, p. 376.Google Scholar
  89. Longnecker, M. L., Martin, W. H., and Sarrett, H. P. (1964). Improvement in the protein efficiency of soybean concentrates and isolates by heat treatment. J. Agric. Food Chem., 12, 411–412.CrossRefGoogle Scholar
  90. Lotan, R. and Sharon, N. (1977). Modification of the biological properties of plant lectins by chemical crosslinking. In: “Protein Crosslinking: Biochemical and Molecular Aspects”, M. Friedman, ed., Plenum Press, New York, pp. 140–168.Google Scholar
  91. Lotan, R. and Sharon, N. (1977). Modification of the biological properties of plant lectins by chemical crosslinking. In: “Protein Crosslinking: Biochemical and Molecular Aspects”, M. Friedman, ed., Plenum Press, New York, pp. 140–168.Google Scholar
  92. Lotan, R., Siegelman, H. W., Lis, H., and Sharon, N. (1974). Subunit structure of soybean agglutinins. J. Biol. Chem., 249. 1219–1224.Google Scholar
  93. Marshall, H. F., Chan, K. C., Miller, K. S., and Satterlee, L. D. (1982). Sulfur amino acid stability. Effects of processing on legume proteins. J. Food Sci., 47, 1170–1174.CrossRefGoogle Scholar
  94. Matsuda, T., Watanabe, K., and Nakamura, R. (1983). Ovomucoid and ovoinhibitor isolated from chicken egg white are immunologically cross-reactive. Biochem. Biophys. Res. Commun., 110. 75–81.CrossRefGoogle Scholar
  95. McGinnis, J. and Evans, R. J. (1947). Amino acid deficiencies of raw and heated soybean oil meal for chicks. J. Nutrition. 34. 725–732.Google Scholar
  96. Menegatti, E., Palmieri, S., Walde, P., and Luisi, P. L. (1985). Isolation and characterization of a trypsin inhibitor from white mustard (Sinapis alba L.). J. Agric. Food Chem., 33, 784–789.CrossRefGoogle Scholar
  97. Mihalyi, E. (1978). “Application of Proteolytic Enzymes to Protein Structure Studies”, CRC Press, Boca Baton, Florida, 2nd edition, p. 129.Google Scholar
  98. Mikola, J., and Suolinna, E. M. (1969). Purification and properties of a trypsin inhibitor from barley. Europ. J. Biochem., 9, 555–560.CrossRefGoogle Scholar
  99. Mitchell, H. L. and Parrish, D. B. (1981). Effect of trypsin inhibitor from alfalfa meal on rat growth. Nutr. Repts. Int., 24, 799–801.Google Scholar
  100. Moore, S. (1963). On the determination of cystine as cysteic acid. J. Biol. Chem., 238, 235–238.Google Scholar
  101. Nachbar, M. S. and Oppenheim, J. D. (1980). Lectins in the United States diet: a survy of lectins in commonly consumed foods and a review of the literature. Amer. J. Clin. Nutr., 33, 2338–2345.Google Scholar
  102. Naim, M., Gertler, A., and Birk, Y. (1982). The effect of dietary raw and autoclaved soya-bean protein fraction on growth, pancreatic enlargement and pancreatic enzymes in rats. British J. Nutrition. 41, 281–288.CrossRefGoogle Scholar
  103. Noah, N. D., Bender, A. E., Reaidi, G. B., and Gilbert, R. J. (1980). Food poisoning from raw red kidney beans. Brit. Medical J., p. 236.Google Scholar
  104. Ogiso, T., Noda, T., Sako, Y., and Aoyama, M. (1975). Studies on trypsin inhibitor in barley. Purification and some properties. J. Biochem. (Tokyo). 78, 9–17.Google Scholar
  105. Osuga, D. T., Bigler, J. C., Uy, R. L., Sjoberg, L., and Feeney, R. E. (1974). Comparative biochemistry of penguin egg-white proteins. l. Ovomucoids: Composition and inhibitory activites for trypsin, α-chymotrypsin and subtilisin. Comp. Biochem. Physiol., 48B, 519–533.Google Scholar
  106. Otlewski, J., Polanowski, A., Leluk, J., and Wilusz, T. (1984). Trypsin inhibitor in summer squash Cucurbita-Pepo seeds. Isolation, purification, and partial characterization of three inhibitors. Acta Biochim. Polonica., 31, 267–278.Google Scholar
  107. Parks, D. A., Granger, D. N., Bulkley, G. B., and Shah, A. K. (1985). Soybean trypsin inhibitor attenuates ischemic injury to the feline small intestine. Gastroenterology. 89, 7–12.Google Scholar
  108. Perry, L. J. and Wetzel, R. (1984). Disulfide bond engineered into T-4 lysozyme. Stabilization of the protein toward thermal inactivation. Science, 226, 555–557.CrossRefGoogle Scholar
  109. Powers, J. R. and Whitaker, J. R. (1977). Purification and some physical and chemical properties of red kidney bean (Phaseolus vulgaris) α-amylase inhibitor. J. Food Biochem., 1, 217–238.CrossRefGoogle Scholar
  110. Pusztai, A., Clarke, E. M. W., Grant, G., and King, T. P. (1981). The toxicity of Phaseolus vulgaris lectins. Nitrogen balance and immunochemical studies. J. Sci. Food Agric. 32, 1037–1046.CrossRefGoogle Scholar
  111. Rackis, J. J. and Gumbmann, M. R. (1981). Protease inhibitors: physiological properties and nutritional significance. In: “Antinutrients and Natural Toxicants in Foods”, R. L. Ory, ed., Food & Nutrition Press, Westport, Connecticut. pp. 203–237.Google Scholar
  112. Rackis, J. J., Wolf, W. J., and Baker, E. C. (1986). Protease inhibitors in plant foods: content and inactivation. This volumeGoogle Scholar
  113. Reaidi, G. B., McPherson, L., and Bender, A. E. (1981). Toxicity of red kidney beans (Phaseolus vulgaris). J. Sci. Food Agric., 32, 846–847.Google Scholar
  114. Rios-Iriarte, B. J. and Barnes, R. H. (1966). The effect of overheating on certain nutritional properties of the protein of soybeans. Food Technol., 20, 836–838.Google Scholar
  115. Rupley, J. A. (1967). Susceptibility to attack by proteolytic enzymes. Meth. Enzvmol., 11, 905–917.CrossRefGoogle Scholar
  116. Ryan, C. Y. and Hass, G. M. (1981). Structural, evolutionary and nutritional properties of proteinase inhibitors from potatoes. In: “Antinutrients and Natural Toxicants in Foods”, R. L. Ory, ed., Food & Nutrition Press, Westport, Connecticut, pp. 169–185.Google Scholar
  117. Sathe, S. K. and Salunkhe, D. K. (1981). Studies on trypsin and chymytropsin inhibitory activities, hemagglutinating activity, and sugars in the Great Northern bean (Phaseolus vulgaris L.). J. Food Sci., 46, 626–629.CrossRefGoogle Scholar
  118. Sedlak, J. and Lindsay, R. H. (1968). Estimation of total, protein-bound, and non-protein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem., 25, 192–205.CrossRefGoogle Scholar
  119. Sen, L. C. and Whitaker, J. R. (1973). Some properties of a ficin-papain inhibitor from avian egg white. Arch. Biochem. Biophys., 158. 623–632.CrossRefGoogle Scholar
  120. Shannon, B. M., Howe, J. M., and Clark, H. E. (1972). Interrelationships between dietary methionine and cystine as reflected by growth, certain hepatic enzymes and liver composition of weanling rats. J. Nutrition. 102. 557–562.Google Scholar
  121. Skrede, A. and Krogdahl, A. (1985). Heat affects nutritional characteristics of soybean meal and excretion of proteinases in mink and chicks. Nutr. Repts. Int., 32, 479–489.Google Scholar
  122. Smirnoff, P., Khalet, S., Birk, Y., and Applebaum, S.W. (1979). Trypsin and chymotrypsin inhibitor from chick peas. Selective chemical modification of the inhibitor and isolation of two isoinhibitors. Int. J. Pept. Prot. Res., 14. 186–192.CrossRefGoogle Scholar
  123. Smith, C., Van Megen, W., Twaalfhoven, L., and Hitchcock, C. (1980). The determination of trypsin inhibitor levels in foodstuffs. J. Sci. Food Agric., 31, 341–350.CrossRefGoogle Scholar
  124. Smith, J. T., Acuff, R. V., Bittle, J. B., and Gilbert, M. L. (1983). A metabolic comparison of cysteine and methionine supplements in the diet of a rat. J. Nutrition. 113, 222–227.Google Scholar
  125. Snow, J. T., Finley, J. W., and Friedman, M. (1975). Oxidation of sulfhydryl groups to disulfides by sulfoxides. Biochem. Biophys. Res. Commun., 64, 441–445.CrossRefGoogle Scholar
  126. Starcher, B., Bryant, L., and Elfant, M. (1986). Protease inhibitors of the marama bean. This volumeGoogle Scholar
  127. Stevens, F. C., Wuerz, S., and Krahn, J. (1974). Structure-function relationships in lima bean protease inhibitor. In: “Proteinase Inhibitors”, Proc. Int. Res. Conf., 2nd (Bayer Sump. V). H. Fritz, H. Tschesche, L. J. Greene, and E. Tschetsche, eds., Springer-Verlag, Berlin and New York.Google Scholar
  128. Stipanuk, M. H. and Benevenga, N. J. (1977). The effect of cystine on the metabolism of methionine in rats. J. Nutrition. 107. 1455–1467.Google Scholar
  129. Stockland, W. L., Meade, R. J., Wass, D. F., and Sowers, J. E. (1973). Influence of levels of methionine and cystine on the total sulfur amino acid requirement of the growing rat. J. Animal Sci., 36, 526–530.Google Scholar
  130. Tan-Wilson, A. L. and Wilson, K. A. (1986). Relevance of multiple soybean trypsin inhibitor forms to nutritional quality. This volume.Google Scholar
  131. Tanford, C. (1962). The interpretation of hydrogen ion titration curves of proteins. Adv. Protein Chem., 17, 69–165.CrossRefGoogle Scholar
  132. Temler, R. S. and Mettraux, C. (1986). Gastrin and cholecystokinin levels in rats fed soya bean trypsin inhibitors. This volume.Google Scholar
  133. Troll, W., Frenkel, K., and Wiesner, R. (1986). Protease inhibitors: their role as modifiers of carcinogenic processes. This volume.Google Scholar
  134. Tur-Sinai, A., Birk, Y., Gertler, A., and Rigbi, M. (1972). A basic trypsin and chymotrypsin-inhibitor from ground nuts (Arachis hypogaea). Biochim. Biophys. Acta. 263, 666–672.CrossRefGoogle Scholar
  135. Veerappa Gowda, H.S. and Karunasagar, I. (1985). Effect of protease inhibitors from Adenathera pavonia on the biochemical and microbiological quality of fishes. J. Sci. Food Agric., 36, 113–119.CrossRefGoogle Scholar
  136. Udupa, W. and Pattabiraman, T. N. (1984). Natural plant enzyme inhibitors. Studies on a proteinase inhibitor from Italian millet (Setaria italica). J. Sci. Food Agric., 35, 679–688. See also this volume.CrossRefGoogle Scholar
  137. Wagner, L. P. and Riehm, J. P. (1967). Purification and partial characterization of a trypsin inhibitor isolated from navy beans. Arch. Biochem. Biophys., 121. 672–677.CrossRefGoogle Scholar
  138. Wallace, J. M. and Friedman, M. (1985). Inactivation of hemagglutinins in lima bean (Phaseolus lunatus) flour by N-acetyl-L-cysteine, pH, and heat. Nutr. Repts. Int., 32, 748–753.Google Scholar
  139. Wang, D. (1975). A crystalline protein-proteinase inhibitor from pinto bean seeds. Biochim. Biophys. Acta. 393. 483–496.CrossRefGoogle Scholar
  140. Warsy, A. S., Norton, G., and Stein, M. (1974). Protease inhibitors from broad bean; isolation and purification. Phytochemistry. 13, 2481–2486.CrossRefGoogle Scholar
  141. Whitaker, J. R. (1981). Naturally occuring peptide and protein inhibitors of enzymes. In:. “Impact of Toxicology on Food Processing”, J. C. Ayres and J. C. Kirschman, eds., AVI, Westport, Connecticut, pp. 57–104.Google Scholar
  142. Wilcox, P. E. (1979). Chymotrypsinogens-chymotrypsin. Methods Enzymol., 19, 64–80.CrossRefGoogle Scholar
  143. Wolf, W. J. (1977). Legumes: seed composition and structure, processing into protein products and protein properties. In: “Food Proteins”, J. R. Whitaker and S. R. Tannenbaum, eds., Avi, Westport, Connecticut, pp. 291–314.Google Scholar
  144. Womack, M. and Rose, W. C. (1941). The partial replacement of dietary methionine by cystine for purposes of growth. J. Biol. Chem., 141. 375–379.Google Scholar
  145. Yadav, N. R. and Liener, I. E. (1978). Nutritional evaluation of dryroasted navy bean flour and mixtures with cereal proteins. In: “Nutritional Improvement of Food and Feed Proteins”, M. Friedman, ed., Plenum Press, New York, pp. 401–413.CrossRefGoogle Scholar
  146. Zahnley, J. C. (1984). Stability of enzyme inhibitors and lectins in foods and the influence of specific binding interactions. In: “Nutritional and Toxicological Aspects of Food Safety”, M. Friedman, ed., Plenum Press, New York, pp. 323–356.Google Scholar
  147. Zahnley, J. C. and Friedman, M. (1982). Absorption and fluorescence spectra of S-quinolylethylated Kunitz soybean trypsin inhibitor. J. Protein Chem., 1, 225–240.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Mendel Friedman
    • 1
  • Michael R. Gumbmann
    • 1
  1. 1.Western Regional Research Center, Agricultural Research ServiceU. S. Department of AgricultureBerkeleyUSA

Personalised recommendations