Human Breast Tumor Cells in Culture; New Concepts in Mammary Carcinogenesis

  • E. Y. Lasfargues
  • W. G. Coutinho


The cultivation of human breast tumor cells has been, over the years, a subject of intensive efforts. It still is, but the aims and objectives which originally motivated the isolation of tumor cells have changed.


Mammary Tumor Human Breast Carcinoma Mouse Mammary Tumor Virus Human Breast Tumor Human Breast Carcinoma Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armelin, A.H., Nishikawa, K., and Sato, G.H., 1974, Control of mammalian cell growth in culture p. 97-104. “Control of proliferation in animal cells (Clarkson and Baserga eds.), Cold Spring Harbor Laboratories, Cold Spring Harbor.Google Scholar
  2. Benedict, W.F., Rucker, N., and Mark, C., 1975, Correlation between balance of specific chromosomes and expression of malignancy in hamster cells. J. Natl. Cancer Inst., 54, 157–162.PubMedGoogle Scholar
  3. Bernhard, W., 1960, The detection and study of tumor viruses with the electron microscope. Cancer Research, 20, 712–727.PubMedGoogle Scholar
  4. Bittner, J.J., 1936, Some possible effects of nursing on the mammary gland tumor incidence in mice (preliminary report). Science, 84, 162–163.PubMedCrossRefGoogle Scholar
  5. Black, M.M., Moore, D.H., Shore, B., Zachrau, R.E., and Leis, H.P., 1974, Effect of murine milk samples and human breast tissues on human leukocyte migration indices. Cancer Research, 34, 1054–1060.PubMedGoogle Scholar
  6. Black, M.M., Zachrau, R.E., Shore, B., Dion, A.S., and Leis, H.P., 1978, Cellular immunity to autologous breast cancer and RIII-murine mammary tumor virus preparations. Cancer Research, 38, 2068–2076.PubMedGoogle Scholar
  7. Cailleau, R., Mackay, B., Young, R.K., and Reeves, W.J., 1974a, Tissue culture studies on pleural effusions from breast carcinoma patients. Cancer Res., 34, 801–809.PubMedGoogle Scholar
  8. Cailleau, R., Olive, M., and Cruciger, Q.V., 1978, Long term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro, 14, 911–915.PubMedCrossRefGoogle Scholar
  9. Cailleau, R., Young, R., Olive, M., and Reeves, W.J., 1974b, Breast tumor cell lines from pleural effusions. J. Natl. Cancer Inst., 53, 661–674.PubMedGoogle Scholar
  10. Charney, J., and Moore, D.H., 1972, Immunization studies with mammary tumor virus. J. Natl. Cancer Inst., 48, 1125–1129.PubMedGoogle Scholar
  11. Cruciger, Q.V., Pathak, S., and Cailleau, R., 1976, Human breast carcinomas: marker chromosomes involving 19 in seven cases. Cytogenét. Cell Genet., 17, 231–235.CrossRefGoogle Scholar
  12. Dalton, A.J., Heine, U.I., and Melnick, J.L., 1975, Symposium: Characterization of oncornaviruses and related viruses: a report. J. Natl. Cancer Inst., 55, 941–942.PubMedGoogle Scholar
  13. Davidson, R.L., 1978. Genetics of cultured mammalian cells as studied by somatic cell hybrydization. Natl. cancer Inst. Monogr., 48, 21–30.PubMedGoogle Scholar
  14. Dion, A.S., and Moore, D.H., 1977, Some biochemical aspects of murine mammary tumor virus and the putative human mammary tumor virus. In: Recent Advances in Cancer Research: Cell Biology, Molecular Biology and Tumor Virology (Gallo R.C. ed.) CRC Press, Cleveland, 69–87.Google Scholar
  15. Dion, A.S., Farwell, D.C., Pomenti, A.A., and Girardi, A.J., 1980, A human protein related to the major envelope protein of murine mammary tumor virus: identification ana characterization. Proc. Natl. Acad. Sci. U.S.A. in press.Google Scholar
  16. Dofuku, R., Biedler, J.R., and Splengler, B.A., 1975, Trisomy of chromosome 15 in spontaneous leukemia of AKR mice. Proc. Natl. Acad. Sci. U.S.A., 72, 1515–1517.PubMedCrossRefGoogle Scholar
  17. Dofuku, R., Utakoji, T., and Matsuzawa, A., 1979, Trisomy of chromosome 13 in spontaneous mammary tumors of GR, C3H and noninbred Swiss mice. J. Natl. Cancer Inst., 63, 651–656.PubMedGoogle Scholar
  18. Eagle, H., 1963, Amino acid metabolism in mammalian cell cultures. Science, 130, 432–437.CrossRefGoogle Scholar
  19. Ege, T., Hamberg, H., and Krondahl, U., 1974, Characterization of minicells (nuclei) obtained by cytochalasis enucleation. Exp. Cell Res., 87, 365–377.PubMedCrossRefGoogle Scholar
  20. Ege, T., and Ringertz, N.R., 1974, Preparation of microcells by enucleation of micronucleate cells. Exp. Cell Res., 87, 378–382.PubMedCrossRefGoogle Scholar
  21. Emerman, J.T., and Pitelka, D.R., 1977, Maintenance and induction of morphological differentiation in disassociated mammary epithelium cells on floating collagen membranes. In Vitro, 13, 316–328.PubMedCrossRefGoogle Scholar
  22. Emerman, J.T., Burwen, S.J., and Pitelka, D.R., 1979, Substrate properties influencing ultra-structural differentiation of mammary epithelial cell cultures. Tissue and Cell, 11, 109–119.PubMedCrossRefGoogle Scholar
  23. Engel, L.W., and Young, N.A., 1978, Human breast carcinoma cells in continuous culture: a review. Cancer Res., 38, 4327–4339.PubMedGoogle Scholar
  24. Engel, L.W., Young, N.A., Tralka, T.S., Lippman, M.E., O’Brien, S.J., and Joyce, M.J., 1978, Establishment and characterization of three new continuous cell lines derived from human breast carcinomas. Cancer Res., 38, 3352–3364.PubMedGoogle Scholar
  25. Fogh, J., and Trempe, G., 1975, New human tumor cell lines. Human tumor cells in vitro (Fogh ed.) Plenum Press, New York.Google Scholar
  26. German, J., 1972, Genes which increase chromosomal instability in somatic cells and predispose to cancer. Prog. Med. Genet., 8, 61–102.Google Scholar
  27. Giovanella, B.C., Stehlin, J.S., Lee, S.S., Shepart, R., and Williams, L.J., 1976, Heterotransplantation of human breast carcinomas in “nude” thymus defficient mice. Proc. Am. Assoc. Cancer Res., 17, 124 (494).Google Scholar
  28. Hackett, A.J., Smith, H.S., Springer, E.L., Owens, R.B., Nelson-Rees, W.A., Riggs, J.L., and Gardner, M.B., 1977, Two syngeneic cell lines from human breast tissue: the aneuploid mammary epithelial (HS578T) and the diploid myoepithelial (Hs 578 Bst) cell lines. J. Natl. Cancer Inst., 58, 1795–1806.PubMedGoogle Scholar
  29. Hayflick, L., 1975, Cell biology of aging. Bio. Science, 25, 624–637.Google Scholar
  30. Hoshino, M., and Dmochowski, L., 1973, Electron microscopy study of antigens in cells of mouse mammary tumor cell lines by peroxydase-labeled antibodies in sera of mammary tumor-bearing mice and of patients with breast cancer. Cancer Res., 33, 2551–2561.PubMedGoogle Scholar
  31. Keydar, I., Chen, L., Karby, S., Delarea, Y., Ramanaramayan, M., Mesa-Tejada, R., Spiegelman, S., Hager, J.C., and Calabresi, P., 1978, Detection of an antigen in a human breast cancer cell line (T-47D) immunologically related to the mouse mammary tumor virus. Proc. 11th Meeting on Mammary Cancer in Exp. Animals and Man. p. 66.Google Scholar
  32. Knudson, A.G., 1977, Genetic predisposition to cancer. Cold Spring Harbor Symposia. Cold Spring Harbor, pp. 45-52.Google Scholar
  33. Langlois, A.J., Holder, W.D., Iglehart, J.D., Nelson-Rees, W.A., Wells, S.A., and Bolognesi, D.T. 1979, Morphological biochemical properties of a new human breast cancer cell line. Cancer Res., 39, 2604–2613.PubMedGoogle Scholar
  34. Lasfargues, E.Y., 1957, Cultivation and behavior in vitro of the normal mammary epithelium of the adult mouse. Anat. Rec, 127, 117–129.PubMedCrossRefGoogle Scholar
  35. Lasfargues, E.Y., and Ozzello, L., 1958, Cultivation of human breast carcinomas. J. Natl. Cancer Inst., 21, 1131–1147.PubMedGoogle Scholar
  36. Lasfargues, E.Y., Moore, D.H., Murray, M.R., Haagensen, C.D., and Pollard, E.C., 1959, Production of the milk agent in cultures of mouse mammary carcinoma. J. Biophys. Biochem. Cytol., 5, 93–96.PubMedCrossRefGoogle Scholar
  37. Lasfargues, E.Y., Kramarsky, B., Sarkar, N.H., Lasfargues, J.C., and Moore, D.H., 1972, An established RIII mouse mammary tumor cell line; kinetics of mammary tumor virus (MTV) production. Proc. Soc. Exp. Biol. Med., 139, 242–247.PubMedGoogle Scholar
  38. Lasfargues, E.Y., Coutinho, W.G., Lasfargues, J.C., and Moore, D.H., 1973, A serum substitute that can support the continuous growth of mammary tumor cells. In Vitro, 8, 494–500.PubMedCrossRefGoogle Scholar
  39. Lasfargues, E.Y., and Lasfargues, J.C., 1975, Production of the mouse mammary tumor virus in cultures of BALB/cfC3H strain. Biotech, and Bioeng., 17, 733–743.CrossRefGoogle Scholar
  40. Lasfargues, E.Y., Lasfargues, J.C., Dion, A.S., Greene, A.E., and Moore, D.H., 1976a, Experimental infection of a cat kidney cell line with the mouse mammary tumor virus. Cancer Res., 36, 67–72.PubMedGoogle Scholar
  41. Lasfargues, E.Y., Vaidya, A.B., Lasfargues, J.C., and Moore, D.H., 1976b, In vitro susceptibility of mink lung cells to the mouse mammary tumor virus. J. Natl. Cancer Inst., 57, 447–449.PubMedGoogle Scholar
  42. Lasfargues, E.Y., Coutinho, W.G., and Redfield, E.S., 1978a, Isolation of two human tumor epithelial cell lines from solid breast carcinomas. J. Natl. Cancer Inst., 61, 967–978.PubMedGoogle Scholar
  43. Lasfargues, E.Y., 1978b, BT-549; Breast Cancer Task Force Cell Culture Bank, Rockville, MD: EGLG Mason Research Institute.Google Scholar
  44. Lasfargues, E.Y., Coutinho, W.G., and Dion, A.S., 1979, A human breast tumor cell line (BT-474) that supports mouse mammary tumor virus replication. In Vitro, 15, 723–729.PubMedCrossRefGoogle Scholar
  45. Lasfargues, E.Y., and Lasfargues, J.C., 1980, Mouse mammary carcinogenesis; genetic basis of cell transformation. Proc. Am. Assoc. Cancer Res., 21, in press.Google Scholar
  46. Levan, G., Mandahl, N., Bregula, U., Klein, G., and Levan, A., 1976, Double minute chromosomes are not centromeric regions of the host chromosome. Hereditas, 83, 83–90.PubMedCrossRefGoogle Scholar
  47. McGrath, C.M., Grant, P.M., Soule, H.D., Clancy, T., and Rich, M.A., 1974, Replication of oncorna virus-like particles in human breast carcinoma cell line MCF-7. Nature, 25, 247–250.CrossRefGoogle Scholar
  48. McPherson, I., 1973, Soft agar techniques 276-280. In Tissue Culture Methods and Application (Kruse P.F. and Patterson, M.K. eds), Academic Press, New York.Google Scholar
  49. Marshall, C.J., Franks, L.M.,. and Carbonell, A.W., 1977, Markers of neoplastic transformation in epithelial cell lines derived from human carcinomas. J. Natl. Cancer Inst., 58, 1743–1751.PubMedGoogle Scholar
  50. Mesa-Tejada, R., Keydar, I., Ramarayanan, T., Ohno, T., Fenoglio, C., and Spiegelman, S., 1978, Detection in human breast carcinomas of an antigen immunologically related to a group specific antigen of mouse mammary tumor virus. Proc. Nat. Ac. Sci. USA, 75, 15–29, 1533.CrossRefGoogle Scholar
  51. Miller, M.F., Dmochowski, L., and Bowen, J.M., 1977, Immunoelectron microscope studies of antibodies in mouse sera directed against mouse mammary tumor virus. Cancer Res., 31, 2086–2091.Google Scholar
  52. Moore, G.E., Sandberg, A.A., and Ulrich, K., 1966, Suspension cell culture and in vivo and in vitro chromosome constitution of mouse leukemia L1210. J. Natl. Cancer Inst., 36, 405–421.PubMedGoogle Scholar
  53. Moore, D.H., Charney, J., Kramarsky, B., Lasfargues, E.Y., Sarkar, N.H., Brennan, M.J., Burrows, J.H., Sirsat, S.M., Paymaster, J.C., and Vaidya, A.B., 1971, Search for a human breast cancer virus. Nature (London), 229, 611–614.CrossRefGoogle Scholar
  54. Moore, D.H., Holben, J.A., and Charney, J., 1976, Biologic characteristics of some mouse mammary tumor viruses. J. Natl. Cancer Inst., 57, 889–896.PubMedGoogle Scholar
  55. Moore, D.H., Long, C.A., Vaidya, A.B., Sheffield, J.B., Dion, A.S., and Lasfargues, E.Y., 1979a, Mammary tumor viruses. Advances in Cancer Research (G. Klein and S. Weinhouse eds.), Academic Press, 29, 347-418.Google Scholar
  56. Moore, D.H., Sarkar, N.H., Holben, J.A., and Sheffield, J.B., 1979b, Idiopathic mammary tumors in BALB/c mice. Int. J. Cancer, 23, 713–717.PubMedCrossRefGoogle Scholar
  57. Müller, M., Hageman, P.C., and Daams, J.S., 1972, On antigens in human breast cancer sera related to the murine mammary tumor virus. Nature-New Biology, 237, 116–117.PubMedCrossRefGoogle Scholar
  58. Nordquist, R.E., Ishmael, D.R., Lovig, C.A., Hyder, D.M., and Hoge, A.F., 1975, The tissue culture and morphology of human breast tumor cell line BOT-2. Cancer Res., 35., 3100–3105.PubMedGoogle Scholar
  59. Pitelka, D.R., Bern, H.A., DeOme, K.B., Schooley, C.M., and Wellings, S.R., 1958, Virus-like particles in hyperplastic alveolar nodules of the mammary gland of the C3H/He CRGL mouse. J. Natl. Cancer Inst., 20, 541–553.PubMedGoogle Scholar
  60. Ponten, J., 1974, Carcinogenesis in vitro. Recent Results in Cancer Research (E. Grundmann ed.), V. 44, p. 98–102. Springer Verlag, Berlin, Heidelberg, New York.Google Scholar
  61. Reed, M.V., and Gey, G.O., 1963, Cultivation of normal and malignant lung tissue. I. The establishment of three adenocarcinoma cell strains. Lab. Invest., 11, 638–653.Google Scholar
  62. Sanford, K.K., Andervont, H.B., Hobbs, G.L., and Earle, W.R., 1961, Maintenance of the mammary tumor agent in long-term cultures of mouse mammary carcinoma. J. Natl. Cancer Inst., 26, 1275–1288.Google Scholar
  63. Sarkar, N.H., and Moore, D.H., 1974, Surface structure of mouse mammary tumor virus. Virology, 61, 38–55.PubMedCrossRefGoogle Scholar
  64. Sarkar, N.H., Holben, J.A., and Sheffield, J.B., 1979b, Idiopathic mammary tumors in BALB/c mice. Int. J. of Cancer, 23, 713–717.CrossRefGoogle Scholar
  65. Schlom, J., and Spiegelman, S., 1971, Simultaneous detection of the reverse transcriptase and high molecular weight RNA unique to the oncogenic RNA viruses. Science, 174, 840–843.PubMedCrossRefGoogle Scholar
  66. Sebesteny, A., Taylor-Papadimitrion, J., Ceriani, R., Millis, R., Schmidt, C., and Trevan, D., 1979, Primary human carcinomas transplantable in nude mice. J. Natl. Cancer Inst., 63, 1331–1337.PubMedGoogle Scholar
  67. Seman, G., Myers, B., Williams, W.C., Gallager, H.S., and Dmochowski, L., 1969, Studies on the relationship of viruses to the origin of human breast cancer. II. Virus-like particles in human breast tumors. Texas Rep. Biol. Med., 27, 839–866.Google Scholar
  68. Shin, S., Friedman, V.H., and Risser, R., 1975, Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro. Proc. Natl. Ac. Sci. USA, 72, 4435–4439.CrossRefGoogle Scholar
  69. Soule, H.D., Vazquez, A., Long, A., Albert, S., and Brennan, M.A., 1973, Human cell lines from a pleural effusion derived from a breast carcinoma. J. Natl. Cancer Inst., 51, 1409–1413.PubMedGoogle Scholar
  70. Spriggs, A.L., Boddington, M.M., and Clarke, C.M., 1962, Chromosomes of human cancer cells. Brit. Med. J., 38, 1431–1435.CrossRefGoogle Scholar
  71. Sykes, J.A., Whitescarver, J., and Briggs, J., 1968, Observations on a cell line producing the mammary tumor virus. J. Natl. Cancer Inst., 41, 1315–1327.PubMedGoogle Scholar
  72. Tsubura, Y., Toyoshima, K., Sano, S., and Watanabe, T., 1968, Fate of B particles of mouse mammary tumor in vivo and in vitro. In: “Cancer cells in culture” (H. Katsuta ed) pp. 216–230. University of Tokyo Press, Tokyo.Google Scholar
  73. Vaage, J., 1978, A survey of the growth characteristics of and the host reactions to one hundred C3H/He mammary carcinomas. Cancer Res., 38, 331–338.PubMedGoogle Scholar
  74. Vaidya, A.B., Black, M.M., Dion, A.S., and Moore, D.H., 1974, Homology between human breast tumor RNA and mouse mammary tumor virus genome. Nature (London), 249, 565.CrossRefGoogle Scholar
  75. Varmus, H.E., Quintrell, N., Medeiros, E., Bishop, J.M., Nowinski, R.C., and Sarkar, N.H., 1973, Transcription of mouse mammary tumor virus genes in tissues from high and low tumor incidence mouse strains. J. Mol. Biol., 79, 663–679.PubMedCrossRefGoogle Scholar
  76. Weiss, M., and Green, H., 1967, Human-mouse hybrid cell lines containing partial complements of human chromosomes and functioning human genes. Proc. Nat. Ac. Sci., USA, 58, 1104–1111.CrossRefGoogle Scholar
  77. Wiener, F., Klein, G. and Harris, H., 1974, The analysis of malignancy by cell-fusion. V. Further evidence of the ability of normal diploid cells to suppress malignancy. J. Cell Sci., 15, 177–183.PubMedGoogle Scholar
  78. Wiener, F., Ohno, S., Spira, J., Haran-Ghera, N., and Klein, C., 1978, Chromosome changes (Trisomies ≠ 15 and 17) associated with tumor progression in leukemias induced by leukemia radiation virus. J. Natl. Cancer Inst., 60, 227–237.Google Scholar
  79. Yamamoto, T., Rabinowitz, Z., and Sachs, L., 1973, Identification of chromosomes that control malignancy. Nature, 243, 247–250.Google Scholar
  80. Yang, N.S., Soule, H.D., and McGrath, C.M., 1977, Expression of murine mammary tumor virus-related antigens in human breast carcinoma (MCF-7) cells. J. Natl. Cancer Inst., 59, 1357–1367.PubMedGoogle Scholar
  81. Yang, N.S., McGrath, C.M., and Furmanski, P., 1978, Presence of a mouse mammary tumor virus-related antigen in human breast carcinoma cells and its absence from normal mammary epithelial cells. J. Natl. Cancer Inst., 61, 1205–1208.PubMedGoogle Scholar
  82. Yang, J., Bowman, P., Richards, J., Guzman, R., Evans, J., McCormick, K., Hamamoto, S., Pitelka, D., and Nandi, S., 1979, Sustained growth and 3-dimensional organization of primary cultures of normal and neoplastic mammary cells in embedded collagen gels. In Vitro, 15, 226 (276).Google Scholar
  83. Young, R.K., Cailleau, R., Mackay, B., and Reeves, W.J., 1974, Establishment of epithelial cell line MDA-MB-157 from metastatic pleural effusions of human breast carcinoma. In Vitro, 9, 239–245.CrossRefGoogle Scholar
  84. Zachrau, R.E., Black, M.M., Dion, A.S., Shore, B., Williams, C.J., and Leis, H.P., 1978, Specificity of the simultaneous cell-mediated immune reactivity to RIII murine mammary tumor virus glycoprotein 55 and human breast cancer tissues. Cancer Res., 38, 3414–3420.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • E. Y. Lasfargues
    • 1
  • W. G. Coutinho
    • 1
  1. 1.Tumor Cell Biology LaboratoryInstitute for Medical ResearchCamdenUSA

Personalised recommendations