The Static and Dynamic Impurity Spin Susceptibility of Kondo Alloys

  • Wolfgang Götze


In this lecture we want to discuss some properties of a single magnetic impurity imbedded in a metal matrix. We assume that the impurity is described completely by its spin operators S z, S ± = (S x ± S y)/ \(sqrt 2\). For the sake of simplicity we assume the spin to be ½. The metal we will approximate as a free Fermi gas of conduction electrons, and as the interaction between impurity and matrix we will use a simplified exchange contact Hamiltonian. Such a model presents a reasonable description of simple metals like copper or gold containing a small fraction of magnetic ions like Fe, Mn or Cr. Direct measurements of magnetic properties can be performed by determining the spin polarization in an external static magnetic field, or by measuring hyperfine splittings for the impurity nucleus. Hyperfine techniques also provide information about the dynamical behaviour of the impurity spin. In the following we will focus our attention on the static zero field susceptibility and on the zero field excitation spectrum of the impurity.


Spin Polarization Magnetic Impurity Spin Density Wave Ferromagnetic Coupling Coherent Superposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schrieffer, J.R. and Wolff, P.A. (1966). Phys. Rev., 149, 491.ADSCrossRefGoogle Scholar
  2. 2.
    Tomonaga, S. (1950). Prog. Theor. Phys. (Kyoto), 5, 544.MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Schotte, H.D. and Schotte, U. (1969). Phys. Rev., 182, 479; (1970). Z. Phys., 230, 99.MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Slichter, C.P. (1963). Principles of Magnetic Resonance, (Harper and Row, New York).Google Scholar
  5. 5.
    Bloch, F. and Nordsieck, A. (1937). Phys. Rev., 52, 54.ADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Nozières, P. and de Dominicis, C.I. (1969). Phys. Rev., 178, 1084.ADSCrossRefGoogle Scholar
  7. 7.
    Kondo, J. (1969). Advances in Solid State Physics, (Academic Press, New York), 23, 183.Google Scholar
  8. 8.
    Zubarev, D.N. (1960). Usp. Fiz. Nauk, 71, 71MathSciNetGoogle Scholar
  9. Kadanoff, L.P. and Martin, P.C. (1963). Ann. Phys. (N.Y.), 24, 419.MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 9.
    Anderson, P.W. and Yuval, G. (1969). Phys. Rev. Lett., 23, 89ADSCrossRefGoogle Scholar
  11. Anderson, P.W., Yuval, G. and Hamann, D.R. (1970). Phys. Rev., B1, 4464.ADSGoogle Scholar
  12. 10.
    Götze, W. and Schlottmann, P. (1974). Solid State Commun., 13, 17, 511, 861; J. Low Temp. Phys., 16, 87.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Wolfgang Götze
    • 1
    • 2
  1. 1.Physik-Department der TechnischenUniversität, MünchenWest Germany
  2. 2.Max-Planck-Institut für PhysikMünchenWest Germany

Personalised recommendations