Conceptual Phase Diagrams and Their Applications to Itinerant Electron Magnetism

  • John B. Goodenough


An adequate description of the magnetic properties of a solid requires not only a knowledge of the relative energies of the atomic outer-electron states, but also the location of a given electron state within a conceptual phase diagram of electronic properties. In the last few years the physical ideas essential to this task have been identified. My intent in this paper is to review briefly these ideas and to illustrate their usefulness. First, I develop the phase diagrams. Then I review briefly some complex magnetic and crystallographic properties exhibited by several metallic compounds and show how their magnetic order and the magnitudes of the observed atomic moments can be derived in terms of the phase diagrams, known variations across the Periodic Table, and qualitative arguments about the energy bands. These examples illustrate how, from a small set of physical ideas and the phase diagrams, it is possible to develop experimental strategies for controlled modification of known magnetic materials and for a search for new magnetic materials. Although development of fruitful experimental strategies is adequate justification for inclusion of a qualitative discussion in a theoretical conference, my hope is that a heightened confidence in the sufficiency of the physical ideas discussed will also aid the theorists’ search for simplified techniques with which to calculate the observed properties from first principles.


Magnetic Order Spontaneous Magnetism Itinerant Electron Antibonding State Ferromagnetic Spin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Raccah, P.M. and Goodenough, J.B. (1967). Phys. Rev., 155, 932.ADSCrossRefGoogle Scholar
  2. 2.
    Bosnian, A.J. and Van Daal, H.J. (1970). Adv. Phys., 19, 1.ADSCrossRefGoogle Scholar
  3. 3.
    Brinkman, W.F. and Rice, T.M. (1970). Phys. Rev., B2, 4302.ADSGoogle Scholar
  4. 4.
    Goodenough, J.B. (1973). Valence Bond Approach to Magnetic Semiconductors, in New Developments in Semiconductors, (eds. Wallace, P.R., Harris, R. and Zuckermann, M.J.), (Nordhoff International Publishing Co., Leyden), p. 107Google Scholar
  5. Goodenough, J.B., Mott, N.F., Pouchard, M., Demazeau, G. and Hagenmuller, P. (1973). Mater. Res. Bull., 8, 647.CrossRefGoogle Scholar
  6. 5.
    Sparks, J.T. and Komoto, T. (1968). J. Appl. Phys., 38, 715.ADSCrossRefGoogle Scholar
  7. 6.
    McWhan, D.B., Marezio, M., Remeika, J.P. and Dernier, P.D. (1972). Phys. Rev., B5, 2552.ADSGoogle Scholar
  8. 7.
    Magnéli, A. and Andersson, G. (1955). Acta Chem. Scand., 9, 1378CrossRefGoogle Scholar
  9. Goodenough, J.B. (1960). Phys. Rev., 117, 1442.ADSCrossRefGoogle Scholar
  10. 8.
    Goodenough, J.B. (1971). J. Solid State Chem., 3, 490; (1971). Annu. Rev. Mat. Sci., 1, 101.ADSCrossRefGoogle Scholar
  11. 9.
    Slater, J.C. (1937). J. Appl. Phys., 8, 385ADSCrossRefGoogle Scholar
  12. Pauling, L. (1938). Phys. Rev., 54, 899.ADSMATHCrossRefGoogle Scholar
  13. 10.
    Abrahams, S.C., Guttman, L. and Kasper, J.S. (1962). Phys. Rev., 127, 2052ADSCrossRefGoogle Scholar
  14. Wilkinson, M.K. and Shull, C.G. (1956). Phys. Rev., 103, 516.ADSCrossRefGoogle Scholar
  15. 11.
    Meneghetti, D. and Sidhu, S.S. (1957). Phys. Rev., 105, 130ADSCrossRefGoogle Scholar
  16. Bacon, G.E., Dunmur, I.W., Smith, J.H. and Street, R. (1957). Proc. Roy. Soc., A241, 223.ADSGoogle Scholar
  17. 12.
    Kasper, J.S. and Roberts, B.W. (1956). Phys. Rev., 101, 537ADSCrossRefGoogle Scholar
  18. Kunutomi, N., Yamada, T., Nakai, Y. and Fujii, Y. (1969). J. Appl. Phys., 40, 1265.ADSCrossRefGoogle Scholar
  19. 13.
    DeVries, G. (1959). J. Phys. Radium, 20, 438CrossRefGoogle Scholar
  20. Wilkinson, M.K., Wollan, E.O., Koehler, W.C. and Cable, J.W. (1962). Phys. Rev., 127, 2080ADSCrossRefGoogle Scholar
  21. Werner, S.A. and Arrott, A. (1969). J. Appl. Phys., 40, 1447.ADSCrossRefGoogle Scholar
  22. 14.
    Lomer, W.M. (1962). Proc. Phys. Soc., 80, 489.ADSCrossRefGoogle Scholar
  23. 15.
    Bozorth, R.M. (1951). Ferromagnetism, (D. Van Nostrand, New York).Google Scholar
  24. 16.
    Kasper, J.S. and Kouvel, J.S. (1959). J. Phys. Chem. Solids, 11, 231ADSCrossRefGoogle Scholar
  25. Kouvel, J.S. and Graham, C.D., Jr., (1961). J. Phys. Chem. Solids, 21, 57, and references therein.ADSCrossRefGoogle Scholar
  26. 17.
    Shull, C.G. (Private communication).Google Scholar
  27. 18.
    Nevitt, M.V. (1960). J. Appl. Phys., 31, 155ADSCrossRefGoogle Scholar
  28. Chandross, R.J. and Shoemaker, D.P. (1962). J. Phys. Soc. Jap. Suppl. B-III, 17, 16.Google Scholar
  29. 19.
    Shull, C.G. and Wilkinson, M.K. (1955). Phys. Rev., 97, 304.ADSCrossRefGoogle Scholar
  30. 20.
    Meyer, A.J.P. (1956). CR. Acad. Soi. Paris, 242, 2315Google Scholar
  31. Bacon, G.E. and Street, R. (1958). Pvoc. Phys. Soo., 72, 470ADSCrossRefGoogle Scholar
  32. Bozorth, R.M. (1951). Ferromagnetism, (D. Van Nostrand, New York), p. 328.Google Scholar
  33. 21.
    Oleś, A. (1965). Acta Phys. Pol., 27, 343.Google Scholar
  34. 22.
    Pickart, S.J. and Nathans, R. (1960). J. Appl. Phys. Suppl., 31, 372S.ADSCrossRefGoogle Scholar
  35. 23.
    Cable, J.W., Wollan, E.O., Koehler, W.C. and Wilkinson, M.K. (1962). J. Appl. Phys. Suppl., 33, 1340ADSCrossRefGoogle Scholar
  36. Pickart, S.J. and Nathans, R. (1962). J. Appl. Phys. Suppl., 33, 1336.ADSCrossRefGoogle Scholar
  37. 24.
    Wiener, G.W. and Berger, J.A. (1955). J. Met., 7, 360.Google Scholar
  38. 25.
    Frazer, B.C. (1958). Phys. Rev., 112, 751.ADSCrossRefGoogle Scholar
  39. 26.
    Nagakura, S. (1968). J. Phys. Soc. Jap., 25, 488.ADSCrossRefGoogle Scholar
  40. 27.
    Goodenough, J.B., Wold, A. and Arnott, R.J. (1960). J. Appl. Phys. Suppl., 31, 342S.ADSCrossRefGoogle Scholar
  41. 28.
    Kuriyama, M., Husoya, S. and Suzuki, T. (1963). Phys. Rev., 130, 898ADSCrossRefGoogle Scholar
  42. Barbéron, J., Madar, R., Fruchart, E., Lorthioir, G. and Fruchart, R. (1970). Mater. Res. Bull., 5, 903.CrossRefGoogle Scholar
  43. 29.
    Takei, W.J., Shirane, G. and Frazer, B.C. (1960). Phys. Rev., 119, 122.ADSCrossRefGoogle Scholar
  44. 30.
    Bouchaud, J.-P. (1968). Ann. Chim., 3, 81.Google Scholar
  45. 31.
    Fruchart, D., Bertaut, E.F., Mader, R., Lorthioir, G. and Fruchart, R. (1971). Solid State Commun., 9, 1793.ADSCrossRefGoogle Scholar
  46. 32.
    Bertaut, E.F. and Fruchart, D. (1972). Int. J. Magn., 2, 259.Google Scholar
  47. 33.
    Fruchart, D., Bertaut, E.F., Fruchart, E., Barbéron, M., Lorthioir, G. and Fruchart, F. (In press).Google Scholar
  48. 34.
    Hong, H.Y.-P., Kafalas, J.A. and Goodenough, J.B. J. Solid State Chem., (In press).Google Scholar
  49. 35.
    Bertaut, E.F., Fruchart, D. and Fruchart, R. (1971). AIP Conference Proceedings: Magnetism and Magnetic Materials, Section 31, 1355.Google Scholar
  50. 36.
    Madar, R., Gilles, L., Roualt, A., Bouchaud, J.P., Fruchart, E., Lothioir, G. and Fruchart, R. (1967). C.R. Acad. Sci., 264, 308.Google Scholar
  51. 37.
    Fruchart, D., Bertaut, E.F., Madar, R. and Fruchart, R. (1971). J. Phys. Colloque Cl, Suppl. 2-3, 32, 876.Google Scholar
  52. 38.
    Bertaut, E.F., Fruchart, D., Bouchaud, J.-P. and Fruchart, R. (1968). Solid State Commun., 6, 251.ADSCrossRefGoogle Scholar
  53. 39.
    Barbéron, M. (1973). (Thèse), (Faculté des Sciences d’Orsay, Université de Paris).Google Scholar
  54. 40.
    Fruchart, R., Madar, R., Barbéron, M., Fruchart, E. and Lorthioir, M.-G. (1971). J. Phys. Colloque Cl, Suppl. 2-3, 32, 981.Google Scholar
  55. 41.
    Fruchart, D. and Bertaut, E.F. (Quoted in reference [39]).Google Scholar
  56. 42.
    Bouchaud, J.-P. and Fruchart, R. (1964). Bull. Soc. Chim., 1579.Google Scholar
  57. 43.
    Fruchart, D., Bertaut, E.F., Lorthioir, G. and Fruchart, E. (In press).Google Scholar
  58. 44.
    Fruchart, E., Lorthioir, G. and Fruchart, R. (1973). Mater. Res. Bull., 8, 21.CrossRefGoogle Scholar
  59. 45.
    Lowe, L. and Hyers, H.P. (1957). Phil. Mag.[8], 2, 554.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • John B. Goodenough
    • 1
  1. 1.Lincoln LaboratoryMassachusetts Institute of TechnologyLexingtonUSA

Personalised recommendations