Advertisement

The Spin-Phonon Interaction in Anharmonic Ferromagnetic Crystals

  • N. M. Plakida
  • H. Konwent

Abstract

The coupling between magnetic and lattice degrees of freedom in magnetic crystals is taken into account in the framework of the Heisenberg model by the simple assumption that the exchange integral depends on the instantaneous positions of atoms changing as a result of their thermal vibrations. In the standard approach, the exchange integral is expanded in a power series in terms of the displacement of atoms from the equilibrium positions, and only the first and the second terms of the expansion are retained. The first term of the expansion leads to the Heisenberg Hamiltonian describing the spin interaction in the rigid lattice, and the second one describes the interaction between the spins (magnetic moments) and the lattice vibrations (the spin-phonon interaction). The lattice vibrations are assumed to be harmonic. This is the harmonic model. It was extensively developed in numerous papers [1–13] and used to explain the properties of ferromagnetic crystals. The assumptions made in the harmonic model restrict its application to the cases where the displacements of the atoms from equilibrium positions are small relative to inter-atomic spacing.

Keywords

Green Function Heisenberg Model Mass Operator Inelastic Process Magnetic Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akhiezer, A.J., Baryakhtar, V.G. and Kaganov, M.J. (1960). Usp. Fiz. Nauk, 71, 533; 72, 3; [(1961). Sov. Phys. Usp., 3, 567, 661].Google Scholar
  2. 2.
    Akhiezer, A.J., Baryakhtar, V.G. and Peletminski, S.W. (1968). Spin Waves, (North Holland, Amsterdam).Google Scholar
  3. 3.
    Izyumov, Yu.A. (1961). Fiz. Met. Metalloved., 12, 20.Google Scholar
  4. 4.
    Kashcheev, V.N. and Krivoglaz, M.A. (1961). Fiz. Tverd. Tela, 3, 1541; [(1961).Sov. Phys., Solid State, 3].Google Scholar
  5. 5.
    Elliot, R.J. and Stern, H. (1961). Proceedings of The Conference on Inelastic Scattering of Neutron in Solids and Liquids, (IAEA, Vienna).Google Scholar
  6. 6.
    Szaniecki, J. (1962). Acta. Phys. Polon., 22, 3, 9, 21.MathSciNetGoogle Scholar
  7. 7.
    Yakovlev, E.N. (1962). Fiz. Tverd. Tela, 4, 594; [(1962). Sov. Phys., Solid State, 4, 433].Google Scholar
  8. 8.
    Pytte, E. (1965). Ann. Phys. (N.Y), 32, 377.ADSMATHCrossRefGoogle Scholar
  9. 9.
    Bennet, H.S. and Pytte, E. (1967). Phys. Rev., 155, 553.ADSCrossRefGoogle Scholar
  10. 10.
    Tani, K. and Tanaka, H. (1970). J. Phys., C2, L90Google Scholar
  11. Tani, K. and Mori, H. (1968). Prog. Theor. Phys., 39, 876.ADSCrossRefGoogle Scholar
  12. 11.
    Silberglitt, R. (1969). Phys. Rev., 188, 786.ADSCrossRefGoogle Scholar
  13. 12.
    Kashcheev, V.N. (1971). Phys. Stat. Sol., 43, 51.ADSCrossRefGoogle Scholar
  14. 13.
    Kashchenko, M.P., Balakhonov, N.F. and Kurbatov, L.V. (1972). Fiz. Met. Metalloved., 33, 18.Google Scholar
  15. 14.
    Tyablikov, S.V. and Konwent, H. (1968). (Preprint, Jinr P4-3794), (Dubna); (1968). Phys. Lett., A27, 130.Google Scholar
  16. 15.
    Konwent, H. (1968). (Preprint, Jinr P4-4028), (Dubna); (1968). Phys. Lett., A28, 237.Google Scholar
  17. 16.
    Konwent, H. and Plakida, N.M. (1970). Teor. Mat. Fiz., 3, 135.Google Scholar
  18. 17.
    Plakida, N.M. (1970). Phys. Lett, A32, 134.ADSGoogle Scholar
  19. 18.
    Konwent, H. and Plakida, N.M. (1971). Teor. Mat. Fiz., 8, 119.Google Scholar
  20. 19.
    Konwent, H. and Plakida, N.M. (1971). Phys. Lett., A37, 173.ADSGoogle Scholar
  21. 20.
    Konwent, H. (1972). The Effects of the Spin-Phonon Interaction in Anharmonic Crystals, (University of Wroclaw, Institute of Theoretical Physics), (Preprint, No.247), (in Polish).Google Scholar
  22. 21.
    Konwent, H., Plakida, N.M. and Vukajlovič, F.R. (1973). Teor. Mat. Fiz., (Preprint, JINR P4-7145), (Dubna), (to be published).Google Scholar
  23. 22.
    Meissner, G. (1970). Z. Phys., 237, 272.ADSCrossRefGoogle Scholar
  24. 23.
    Boccara, N. (1971). Phys. Stat. Sol., 43, K11.ADSCrossRefGoogle Scholar
  25. 24.
    Zagrebnov, V.A. and Fedyanin, V.K. (1972). Teor. Mat. Fiz., 10, 127.Google Scholar
  26. 25.
    Leibfried, G. (1955). Gittertheorie der Mechanischen und Thermischen Eigenschaften der Kristalle; in Handbuch der Physik, Vol VII/I, (ed. Flügge, S.), (Springer Verlag), p. 104.Google Scholar
  27. 26.
    Plakida, N.M. (1970). Teor. Mat. Fiz., 5, 147; (1972). Teor. Mat. Fiz., 12, 135; (1973) Green Function Method in the Theory of Anharmonic Crystals, in Statistical Physics and Quantum Held Theory, (ed. Bogoliubov, N.N.), (Nauka, Moskva), (in Russian).Google Scholar
  28. 27.
    Plakida, N.M. (1973). Phys. Lett., A43, 481.MathSciNetADSGoogle Scholar
  29. 28.
    Mubayi, V. and Lange, R.V. (1969). Phys. Rev., 178, 882ADSCrossRefGoogle Scholar
  30. Kenan, R.P. (1970). Phys. Rev., B1, 3205.ADSGoogle Scholar
  31. 29.
    Vaks, V.G., Larkin, A.J. and Pikin, S.A. (1967). Zh. Eksp. Teor. Hz., 53, 281, 1053; [(1967). Sov. Phys. JETP, 26, 188, 647].Google Scholar
  32. 30.
    lzyumov, Yu.A. and Kassan-Ogly, F.A. (1968). Hz. Met. Metalloved., 26, 385; (1970). Hz. Met. Matalloved., 30, 225.Google Scholar
  33. 31.
    Rudoy, Yu.G. and Tserkovnikov, Yu.A. (1973). Teor. Mat. Fiz., 14, 102.Google Scholar
  34. 32.
    Abrikosov, A.A., Gorkov, L.P. and Dzyaloshinski, J.E. (1965). Methods of Quantum Field Theory in Statistical Physics, (2nd edn.), (Prentice Hall, London).Google Scholar
  35. 33.
    Vukajlovič, F.R. (1973). (Preprint, JINR P4-7291), (Dubna).Google Scholar
  36. 34.
    Trickey, S.B., Kirk, W.P. and Adams, L.D. (1972). Rev. Mod. Phys., 44, 668.ADSCrossRefGoogle Scholar
  37. 35.
    De Gennes, P.G. (1963). Solid State Commun., 1, 132ADSCrossRefGoogle Scholar
  38. Blinc, R. (1960). J. Phys. Chem. Sol., 13, 204ADSCrossRefGoogle Scholar
  39. Blinc, R. and Zeks, B. (1972). Adv. Phys., 21, 693.ADSCrossRefGoogle Scholar
  40. 36.
    Kabayashi, K.K. (1968). J. Phys. Soc. Jap., 24, 497ADSCrossRefGoogle Scholar
  41. Stasyuk, J.V. and Levitsky, R.R. (1970). Ukrain. Fiz. Zh., 15, 460Google Scholar
  42. Stasyuk, J.V. (1971). Teor. Mat. Fiz., 9, 431Google Scholar
  43. Moore, M.A. and Williams, H.C.W.L. (1972). J. Phys., C5, 3168.ADSGoogle Scholar
  44. 37.
    Vukajlovič, F.R. (1973). Phys. Lett., A44, 231.ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • N. M. Plakida
    • 1
  • H. Konwent
    • 2
  1. 1.Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaUSSR
  2. 2.Institute of ChemistryUniversity of WrocławWrocławPoland

Personalised recommendations