Advertisement

Two-Fluid Hydrodynamic Description of Magnetic Crystals

  • Charles P. Enz

Abstract

The rôle of the exchange interaction in the transition to an ordered state of the spins in a magnetic crystal was first discussed by Heisenberg, Frenkel and Dorfman [1] in 1928. Two years later Bloch [2] showed that this coupling gives rise to wave excitations of the spin orientation. These spin waves, or magnons, were subsequently derived by Landau and Lifshitz [3] in the framework of a purely phenomenological description of magnetism. But it was only the hydrodynamic description by Halperin and Hohenberg [4] that established, for the planar and isotropic ferro- and antiferromagnets, the close analogy with the phenomenological description of superfluid Helium.

Keywords

Spin Wave Superfluid Helium Dissipative Part Window Condition Magnetic Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heisenberg, W. (1928). Z. Phys., 49, 619ADSCrossRefGoogle Scholar
  2. Frenkel, J. (1928). Z. Phys., 49, 31ADSCrossRefGoogle Scholar
  3. Dorfman, J. and Jaanus, R. (1929). Z. Phys., 54, 277.ADSCrossRefGoogle Scholar
  4. 2.
    Bloch, F. (1930). Z. Phys., 61, 206.ADSCrossRefGoogle Scholar
  5. 3.
    Landau, L.D. and Lifshitz, E.M. (1935). Phys. Z. Sowjetunion, 8, 153.MATHGoogle Scholar
  6. 4.
    Halperin, B.I. and Hohenberg, P.C. (1969). Phys. Rev., 188, 898.ADSCrossRefGoogle Scholar
  7. 5.
    Hulthén, L. (1936). Proc. Roy. Acad. Sci. Amsterdam, 39, 190.Google Scholar
  8. 6.
    Enz, C.P. (1971). Phys. Kondens. Mater., 12, 262. This paper contains a confusion between magnon drift and’ superfluid’ velocity which is corrected as follows: Put τ= ∞; discard the comparison of equations (31-33,46) with equations (4.14a-c) and (4.20a,b), respectively, of reference [10]. In addition the condition for the planar case should read J z ij < J ij+. See alsoADSCrossRefGoogle Scholar
  9. Michel, K.H. and Schwabl, F. (1971). Phys. Kondens. Mater., 14, 78.ADSCrossRefGoogle Scholar
  10. 7.
    Gulayev, Yu.V. (1965). Zh. Eksp. Teor. Hz. Pism. Red., 2, 3; [(1965). Sov. Phys. JETP Lett., 2, 1].ADSGoogle Scholar
  11. 8.
    Dingle, R.B. (1952). Proc. Phys. Soc., A65, 1044ADSGoogle Scholar
  12. Gurzhi, R.N. (1965). Fiz. Tverd. Tela, 7, 3515; [(1966). Sov. Phys. Solid State, 7, 2838].Google Scholar
  13. 9.
    Reiter, G.F. (1968). Phys. Rev., 175, 631.ADSCrossRefGoogle Scholar
  14. 10.
    Michel, K.H. and Schwabl, F. (1969). Solid State Commun., 7, 1781; (1970). Phys. Kondens. Mater., 11, 144.ADSCrossRefGoogle Scholar
  15. 11.
    Götze, W. and Michel, K.H. (1967). Phys. Rev., 156, 963.ADSCrossRefGoogle Scholar
  16. 12.
    Schwabl, F. and Michel, K.H. (1970). Phys. Rev., B2, 189ADSGoogle Scholar
  17. Michel, K.H. and Schwabl, F. (1970). Z. Phys., 238, 264; 240, 354.ADSCrossRefGoogle Scholar
  18. 13.
    Enz, C.P. (1972). In Irreversibility in The Many Body Problem, (eds. Biel, J. and Rae, J.), (Plenum Press, London and New York), p. 387.Google Scholar
  19. 14.
    Michel, K.H. and Schwabl, F. (1971). Phys. Rev. Lett., 26, 1568.ADSCrossRefGoogle Scholar
  20. 15.
    Forney, J.J. (1972). (Doctoral Thesis), (Geneva University), (unpublished).Google Scholar
  21. 16.
    Forney, J.J. and Jäckie, J. (1973). Phys. Kondens. Mater., 16, 147.ADSCrossRefGoogle Scholar
  22. 17.
    Kittel, C. (1963). Quantum Theory of Solids, (Wiley, New York), chapter 4.Google Scholar
  23. 18.
    Herring, C. and Kittel, C. (1951). Phys. Rev., 81, 869.ADSMATHCrossRefGoogle Scholar
  24. 19.
    Clogston, A.M., Suhl, H., Walker, L.R. and Anderson, P.W. (1956). J. Phys. Chem. Solids, 1, 129.ADSCrossRefGoogle Scholar
  25. 20.
    Anda, E. (1973). J. Phys. Chem. Solids, 34, 1597.ADSCrossRefGoogle Scholar
  26. 21.
    Loudon, R. and Pincus, P. (1963). Phys. Rev., 132, 673.ADSCrossRefGoogle Scholar
  27. 22.
    Brooks Harris, A. (1966). Phys. Rev., 143, 353.ADSCrossRefGoogle Scholar
  28. 23.
    Keffer, F. (1966). Handbuch der Physik, Vol. XVIII/2, (ed. Flügge, S.), (Springer-Verlag, Berlin, Heidelberg), p. 1.Google Scholar
  29. 24.
    Nagamiya, T., Yosida, K. and Kubo, R. (1955). Adv. Phys., 4, 1.ADSCrossRefGoogle Scholar
  30. 25.
    Shirane, G., Minkiewicz, V.J. and Nathans, R. (1968). J. Appl. Phys., 39, 383.ADSCrossRefGoogle Scholar
  31. 26.
    Okazaki, A., Turberfield, K.C. and Stevenson, R.W.H. (1964). Phys. Lett., 8, 9; (1965). Proc. Phys. Soc., 85, 743.ADSCrossRefGoogle Scholar
  32. 27.
    Guggenheim, H.J., Hutchings, M.T. and Rainford, B.D. (1968). J. Appl. Phys., 39, 1120.ADSCrossRefGoogle Scholar
  33. 28.
    Skalyo, J., Jr., Shirane, G., Birgeneau, R.J. and Guggenheim, H.J. (1969). Phys. Rev. Lett., 23, 1394.ADSCrossRefGoogle Scholar
  34. 29.
    Birgeneau, R.J., Guggenheim, H.J. and Shirane, G. (1973). Phys. Rev. B8, 304.ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Charles P. Enz
    • 1
  1. 1.Département de Physique ThéoriqueUniversité de GenèveGeneva 4Switzerland

Personalised recommendations