Skip to main content

Dipolar and Quadrupolar Ordering in Magnetic Crystals

  • Chapter

Abstract

Consider an array of interacting electric dipoles, for instance polar molecules such as HCl. Bilinear interactions between these dipoles may induce a dipolar ordering below a transition temperature T d: each dipole i then has a mean orientation along some direction +z i. Neglecting the possibility of non-collinearity and sub-lattice structure, suppose that the ordering is ferroelectric. The order parameter of the transition is the polarization <cosθ>, θ being the angle between a dipole and the polarization axis +z. Similarly, consider an array of interacting electric quadrupoles, for instance centro-symmetric linear molecules such as H 2, having no dipolar moment. Interactions between these quadrupoles may induce some kind of ordering below a transition temperature T q. In particular, if all quadrupoles are aligned by positive interactions, the ordering is called ferroquadrupolar. The order parameter is then the orientation <cos2θ - 1/3>, θ being the angle between the quadrupoles and the orientation axis z.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krieger, T.J. and James, H.M. (1954). J. Chem. Phys., 22, 796.

    Article  ADS  Google Scholar 

  2. Kobayashi, K.K., Hanamura, E. and Shishido, F. (1969). Phys. Lett., 28A, 454.

    Google Scholar 

  3. De Germes, P.G. (1969). Phys. Lett., 30A, 454.

    ADS  Google Scholar 

  4. Freiser, M.J. (1971). Mol. Liq. Cryst., 14, 165.

    Article  Google Scholar 

  5. Bean, C.P. and Rodbell, D.S. (1962). Phys. Rev., 126, 104.

    Article  ADS  Google Scholar 

  6. Allen, S.J. (1968). Phys. Rev., 166, 530; 167, 492.

    Article  ADS  Google Scholar 

  7. Long, C. and Wang, Y.L. (1971). Phys. Rev., B3, 1656.

    ADS  Google Scholar 

  8. Moran, T.J., Thomas, R.L., Levy, P.M. and Chen, H.H. (1973). Phys. Rev., B7, 3238.

    ADS  Google Scholar 

  9. Elliott, R.J. and Thorpe, M.F. (1968). J. Appl. Phys., 39, 802.

    Article  ADS  Google Scholar 

  10. Levy, P.M. (1964). Phys. Rev., 135, A155.

    Article  ADS  Google Scholar 

  11. Khomski, D.I. and Kugel, K.I. (1972). JETP Lett., 15, 629.

    Google Scholar 

  12. Sivardière, J., Berker, A.N. and Wortis, M. (1973). Phys. Rev., B7, 343.

    ADS  Google Scholar 

  13. Sivardière, J. (1973). J. Phys. Chem. Solids, 34, 267.

    Article  ADS  Google Scholar 

  14. Finch, G.I., Sinha, A.P.B. and Sinha, K.P. (1957). Pvoc. Roy. Soc., A242, 28.

    Article  ADS  Google Scholar 

  15. Kino, Y., Lüthi, B. and Mullen, M.E. (1972). J. Phys. Soc. Jap., 33, 687.

    Article  ADS  Google Scholar 

  16. Novak, P. (1970). J. Phys. Chem. Solids, 31, 125.

    Article  ADS  Google Scholar 

  17. See: Sivardière, J. (1972). Phys. Rev., B6, 4284, and references therein.

    ADS  Google Scholar 

  18. Sivardière, J. (1973). Phys. Rev., B8, 2004.

    ADS  Google Scholar 

  19. Lüthi, B., Mullen, M.E., Andres, K., Bucher, E. and Maita, J.P. (1973). Phys. Rev., B8, 2639.

    ADS  Google Scholar 

  20. Harley, R.T., Hayes, W., Perry, A.M. and Smith, S.R.P. (1973). J. Phys., C6, 2382.

    ADS  Google Scholar 

  21. Felsteiner, J., Litvin, D.B. and Zak, J. (1971). Phys. Rev., B3, 2706.

    ADS  Google Scholar 

  22. Sivardière, J. (1972). Phys. Rev., B5, 2094.

    ADS  Google Scholar 

  23. See: Falk, H. (1970). Am. J. Phys., 38, 858.

    Article  MathSciNet  ADS  Google Scholar 

  24. Blume, M. and Hsieh, Y.Y. (1969). J. Appl. Phys., 40, 1249.

    Article  ADS  Google Scholar 

  25. Chen, H.H. and Levy, P.M. (1971). Phys. Rev. Lett., 27, 1383.

    Article  ADS  Google Scholar 

  26. Nauciel-Bloch, M., Sarma, G. and Castets, A. (1972). Phys. Rev., B5, 4603.

    ADS  Google Scholar 

  27. Sivardière, J. and Blume, M. (1972). Phys. Rev., B5, 1126.

    ADS  Google Scholar 

  28. Chen, H.H. and Levy, P.M. (1973). Phys. Rev., B7, 4267.

    ADS  Google Scholar 

  29. Elliott, R.J., Harley, R.T., Hayes, W. and Smith, S.R.P. (1972). Proc. Phys. Soc, A328, 217.

    Google Scholar 

  30. Kanamori, J. (1960). J. Appl. Phys., 31, 145.

    Article  Google Scholar 

  31. Thomas, H. and Müller, K.A. (1972). Phys. Rev. Lett., 28, 820.

    Article  ADS  Google Scholar 

  32. Sarfatt, J. and Stoneham, A.M. (1967). Proc. Phys. Soc., 91, 214.

    Article  ADS  Google Scholar 

  33. See a similar calculation applied to DySb in: Ray, D.K. and Young, A.P. J. Phys., C, (to be published).

    Google Scholar 

  34. Wojtowicz, P.J. (1959). Phys. Rev., 116, 32.

    Article  ADS  Google Scholar 

  35. See: Straley, J.P. and Fischer, M.E. (1973). J. Phys., A6, 1310.

    ADS  Google Scholar 

  36. Englman, R. and Halperin, B. (1970). Phys. Rev., B2, 75.

    ADS  Google Scholar 

  37. Trammel, G.T. (1963). Phys. Rev., 131, 932.

    Article  ADS  Google Scholar 

  38. Pytte, E. and Stevens, K.W.H. (1971). Phys. Rev. Lett., 27, 862.

    Article  ADS  Google Scholar 

  39. Becker, P.J. (private communication).

    Google Scholar 

  40. Novak, P. (1970). Czech. J. Phys., B20, 196.

    Article  ADS  Google Scholar 

  41. Halperin, B. and Englman, R. (1970). Solid State Commun., 8, 1555.

    Article  ADS  Google Scholar 

  42. Levy, P.M. (to be published); Sivardière, J. (to be published).

    Google Scholar 

  43. Kjems, J.K., Shirane, G., Birgeneau, R.J. and van Uitert, L.G. (1973). Phys. Rev. Lett., 31, 1300.

    Article  ADS  Google Scholar 

  44. Blume, M., Emery, V.J. and Griffiths, R.B. (1971). Phys. Rev., A4, 1071.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Sivardiere, J. (1976). Dipolar and Quadrupolar Ordering in Magnetic Crystals. In: Łopuszański, J.T., Pękalski, A., Przystawa, J. (eds) Magnetism in Metals and Metallic Compounds. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0016-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0016-9_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0018-3

  • Online ISBN: 978-1-4757-0016-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics