Dipolar and Quadrupolar Ordering in Magnetic Crystals

  • Jean Sivardiere


Consider an array of interacting electric dipoles, for instance polar molecules such as HCl. Bilinear interactions between these dipoles may induce a dipolar ordering below a transition temperature T d: each dipole i then has a mean orientation along some direction +z i. Neglecting the possibility of non-collinearity and sub-lattice structure, suppose that the ordering is ferroelectric. The order parameter of the transition is the polarization <cosθ>, θ being the angle between a dipole and the polarization axis +z. Similarly, consider an array of interacting electric quadrupoles, for instance centro-symmetric linear molecules such as H 2, having no dipolar moment. Interactions between these quadrupoles may induce some kind of ordering below a transition temperature T q. In particular, if all quadrupoles are aligned by positive interactions, the ordering is called ferroquadrupolar. The order parameter is then the orientation <cos2θ - 1/3>, θ being the angle between the quadrupoles and the orientation axis z.


Order Transition Quadrupolar Interaction Tricritical Point Equivalent Orientation Ising System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krieger, T.J. and James, H.M. (1954). J. Chem. Phys., 22, 796.ADSCrossRefGoogle Scholar
  2. 2.
    Kobayashi, K.K., Hanamura, E. and Shishido, F. (1969). Phys. Lett., 28A, 454.Google Scholar
  3. 3.
    De Germes, P.G. (1969). Phys. Lett., 30A, 454.ADSGoogle Scholar
  4. 4.
    Freiser, M.J. (1971). Mol. Liq. Cryst., 14, 165.CrossRefGoogle Scholar
  5. 5.
    Bean, C.P. and Rodbell, D.S. (1962). Phys. Rev., 126, 104.ADSCrossRefGoogle Scholar
  6. 6.
    Allen, S.J. (1968). Phys. Rev., 166, 530; 167, 492.ADSCrossRefGoogle Scholar
  7. 7.
    Long, C. and Wang, Y.L. (1971). Phys. Rev., B3, 1656.ADSGoogle Scholar
  8. 8.
    Moran, T.J., Thomas, R.L., Levy, P.M. and Chen, H.H. (1973). Phys. Rev., B7, 3238.ADSGoogle Scholar
  9. 9.
    Elliott, R.J. and Thorpe, M.F. (1968). J. Appl. Phys., 39, 802.ADSCrossRefGoogle Scholar
  10. 10.
    Levy, P.M. (1964). Phys. Rev., 135, A155.ADSCrossRefGoogle Scholar
  11. 11.
    Khomski, D.I. and Kugel, K.I. (1972). JETP Lett., 15, 629.Google Scholar
  12. 12.
    Sivardière, J., Berker, A.N. and Wortis, M. (1973). Phys. Rev., B7, 343.ADSGoogle Scholar
  13. 13.
    Sivardière, J. (1973). J. Phys. Chem. Solids, 34, 267.ADSCrossRefGoogle Scholar
  14. 14.
    Finch, G.I., Sinha, A.P.B. and Sinha, K.P. (1957). Pvoc. Roy. Soc., A242, 28.ADSCrossRefGoogle Scholar
  15. 15.
    Kino, Y., Lüthi, B. and Mullen, M.E. (1972). J. Phys. Soc. Jap., 33, 687.ADSCrossRefGoogle Scholar
  16. 16.
    Novak, P. (1970). J. Phys. Chem. Solids, 31, 125.ADSCrossRefGoogle Scholar
  17. 17.
    See: Sivardière, J. (1972). Phys. Rev., B6, 4284, and references therein.ADSGoogle Scholar
  18. 18.
    Sivardière, J. (1973). Phys. Rev., B8, 2004.ADSGoogle Scholar
  19. 19.
    Lüthi, B., Mullen, M.E., Andres, K., Bucher, E. and Maita, J.P. (1973). Phys. Rev., B8, 2639.ADSGoogle Scholar
  20. 20.
    Harley, R.T., Hayes, W., Perry, A.M. and Smith, S.R.P. (1973). J. Phys., C6, 2382.ADSGoogle Scholar
  21. 21.
    Felsteiner, J., Litvin, D.B. and Zak, J. (1971). Phys. Rev., B3, 2706.ADSGoogle Scholar
  22. 22.
    Sivardière, J. (1972). Phys. Rev., B5, 2094.ADSGoogle Scholar
  23. 23.
    See: Falk, H. (1970). Am. J. Phys., 38, 858.MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Blume, M. and Hsieh, Y.Y. (1969). J. Appl. Phys., 40, 1249.ADSCrossRefGoogle Scholar
  25. 25.
    Chen, H.H. and Levy, P.M. (1971). Phys. Rev. Lett., 27, 1383.ADSCrossRefGoogle Scholar
  26. 26.
    Nauciel-Bloch, M., Sarma, G. and Castets, A. (1972). Phys. Rev., B5, 4603.ADSGoogle Scholar
  27. 27.
    Sivardière, J. and Blume, M. (1972). Phys. Rev., B5, 1126.ADSGoogle Scholar
  28. 28.
    Chen, H.H. and Levy, P.M. (1973). Phys. Rev., B7, 4267.ADSGoogle Scholar
  29. 29.
    Elliott, R.J., Harley, R.T., Hayes, W. and Smith, S.R.P. (1972). Proc. Phys. Soc, A328, 217.Google Scholar
  30. 30.
    Kanamori, J. (1960). J. Appl. Phys., 31, 145.CrossRefGoogle Scholar
  31. 31.
    Thomas, H. and Müller, K.A. (1972). Phys. Rev. Lett., 28, 820.ADSCrossRefGoogle Scholar
  32. 32.
    Sarfatt, J. and Stoneham, A.M. (1967). Proc. Phys. Soc., 91, 214.ADSCrossRefGoogle Scholar
  33. 33.
    See a similar calculation applied to DySb in: Ray, D.K. and Young, A.P. J. Phys., C, (to be published).Google Scholar
  34. 34.
    Wojtowicz, P.J. (1959). Phys. Rev., 116, 32.ADSCrossRefGoogle Scholar
  35. 35.
    See: Straley, J.P. and Fischer, M.E. (1973). J. Phys., A6, 1310.ADSGoogle Scholar
  36. 36.
    Englman, R. and Halperin, B. (1970). Phys. Rev., B2, 75.ADSGoogle Scholar
  37. 37.
    Trammel, G.T. (1963). Phys. Rev., 131, 932.ADSCrossRefGoogle Scholar
  38. 38.
    Pytte, E. and Stevens, K.W.H. (1971). Phys. Rev. Lett., 27, 862.ADSCrossRefGoogle Scholar
  39. 39.
    Becker, P.J. (private communication).Google Scholar
  40. 40.
    Novak, P. (1970). Czech. J. Phys., B20, 196.ADSCrossRefGoogle Scholar
  41. 41.
    Halperin, B. and Englman, R. (1970). Solid State Commun., 8, 1555.ADSCrossRefGoogle Scholar
  42. 42.
    Levy, P.M. (to be published); Sivardière, J. (to be published).Google Scholar
  43. 43.
    Kjems, J.K., Shirane, G., Birgeneau, R.J. and van Uitert, L.G. (1973). Phys. Rev. Lett., 31, 1300.ADSCrossRefGoogle Scholar
  44. 44.
    Blume, M., Emery, V.J. and Griffiths, R.B. (1971). Phys. Rev., A4, 1071.ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Jean Sivardiere
    • 1
  1. 1.Département de Recherche FondamentaleCentre d’Etudes NucléairesGrenoble CedexFrance

Personalised recommendations