Magnetic Properties of Actinides and Their Compounds

  • Daniel J. Lam


The first studies of the magnetic properties of the actinides concentrated on ionic and covalent compounds to obtain information concerning the actinide ionic charge. For the most part, these studies were confined to magnetic susceptibility measurements at room temperature and higher. Later, when sufficient information became available to indicate that the crystal-field interaction was strong, the measurements were extended down to liquid helium temperature. In the early 1950’s, the properties of uranium alloys were systematically studied by Professor Bates and his co-workers in England to obtain information on the band structure. About the same time, Prof. Trzebiatowski and his associates in Poland began a systematic examination of the magnetic properties of uranium intermetallic compounds, which is actively pursued today. Subsequently, groups at Harwell in England, at Fontenay in France, at Phillips Research Laboratory in the Netherlands, and at the AEC National Laboratories in the United States have studied the magnetic properties of neptunium, plutonium, and americium compounds using magnetization, neutron and X-ray diffraction, nuclear gamma-ray resonance (Mössbauer effect), nuclear magnetic resonance, electrical-transport properties, and low-temperature specific-heat measurements.


Liquid Helium Temperature Reduce Matrix Element Coulomb Correlation Uranium Alloy Actinide Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jullien, R., Galleani d’Agliano, E. and Coqblin, B. (1972). Phys. Rev., B6, 2139.ADSGoogle Scholar
  2. 2.
    Hill, H.H. (1970). In Plutonium 1970, (ed. Miner, W.N.), (Metallurgical Society of AIME, New York), pp. 2–19.Google Scholar
  3. 3.
    Lam, D.J. and Aldred, A.T. (1974). In The Actinides: Electronic Structure and Related Properties, (eds. Freeman, A.J. Darby, J.B. Jr.), (Academic Press, New York).Google Scholar
  4. 4.
    Aldred, A.T., Dunlap, B.D., Lam, D.J. and Nowik, I. (1974). Phys. Rev., B10, 1011.ADSGoogle Scholar
  5. 5.
    Harvey, A.R. Electrical Resistivities of the Intermetallic Compounds NpRu2 and NpOs2, Solid State Commun., (to be published).Google Scholar
  6. 6.
    Arko, A.J., Fradin, F.Y. and Brodsky, M.B. (1973). Phys. Rev., B8, 4104.ADSGoogle Scholar
  7. 7.
    Long, C. and Wang, Y.L. (1971). Phys. Rev., B3, 1656.ADSGoogle Scholar
  8. 8.
    Erdos, P. and Robinson, J.M. (1973). Am. Inst. Phys. Conf. Proc., 10, 1070.ADSGoogle Scholar
  9. 9.
    Lander, G.H., Kuznietz, M. and Cox, D.E. (1969). Phys. Rev., 188, 963ADSCrossRefGoogle Scholar
  10. Allbutt, M., Dell, R.M., Junkison, A.R. and Marples, J.A. (1970). J. Inorg. Nucl. Chem., 32, 2159CrossRefGoogle Scholar
  11. Trzebiatowski, W. and Palewski, T. (1969). Phys. Stat. Sol., 34, K51ADSCrossRefGoogle Scholar
  12. Friedman, F. and Grunzweig-Genossar, J. (1971). Phys. Rev., B4, 180.ADSGoogle Scholar
  13. 10.
    Trzebiatowski, W. and Palewski, T. (1971). Bull. Acad. Polon. Sci. Ser. Sci. Chim., 19, 83Google Scholar
  14. Leciejewicz, J., Murasik, A., Troc, R. and Palewski, T. (1971). Phys. Stat. Sol., 46, 391ADSCrossRefGoogle Scholar
  15. Lander, G.H., Mueller, M.H. and Reddy, J.F. (1972). Phys. Rev., B6, 1880.ADSGoogle Scholar
  16. 11.
    Leciejewicz, J., Murasik, A., Palewski, T. and Troc, R. (1970). Phys. Stat. Sol., 38, K89; (1971). Phys. Stat. Sol., 48, 445ADSCrossRefGoogle Scholar
  17. Palewski, T., Suski, W. and Mydlarz, T. (1970). Int. J. Magn., 3, 269.Google Scholar
  18. 12.
    Kuznietz, M. and Grunzweig-Genossar, J. (1970). J. Appl. Phys., 41, 906.ADSCrossRefGoogle Scholar
  19. 13.
    Aldred, A.T., Dunlap, B.D., Harvey, A.R., Lam, D.J., Lander, G.H. and Mueller, M.H. (1974). Phys. Rev., B9, 3766.ADSGoogle Scholar
  20. 14.
    Chan, S.-K. and Lam, D.J. (1970). In Plutonium 1970, (ed. Miner, W.N.), (The Metallurgical Society of AIME, New York), pp. 219–232, and reference [3].Google Scholar
  21. 15.
    Racah, G. (1949). Phys. Rev., 76, 1352.ADSMATHCrossRefGoogle Scholar
  22. 16.
    Wybourne, B.G. (1965). Spectroscopic Properties of Rare Earths, (Wiley, New York).Google Scholar
  23. 17.
    Judd, B.R. (1963). Operator Techniques in Atomic Spectroscopy, (McGraw-Hill, New York).Google Scholar
  24. 18.
    Nielson, C.W. and Koster, G.F. (1963). Spectroscopic Coefficients for the p n dn, and fn Configuration, (MIT Press, Cambridge, Massachusetts).Google Scholar
  25. 19.
    Lam, D.J. and Fradin, F.Y. (1974). Phys. Rev., B9, 238.ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Daniel J. Lam
    • 1
  1. 1.Argonne National LaboratoryArgonneUSA

Personalised recommendations