Elementary Excitations of High Degree Pair Interactions in Rare Earth Compounds

  • Peter M. Levy


Rare earth ions retain many of their free ion properties when they form solids. In particular, the total angular momentum \(\vec J = \vec L + \vec S\) remains a relatively good quantum number. In a first approximation the effect of the crystal field surrounding the rare earth ion is to split the (2J + 1)-fold degeneracy of the ground manifold. If the surrounding has high point group symmetry, e. g., cubic Oh symmetry, the split levels will still be degenerate; the orbital angular momentum of the rare earth ion is not quenched. Therefore we expect that the effects of orbital angular momentum on the magneto-thermal properties of rare earth compounds are quite marked.


Excitation Spectrum Spin Wave Orbital Angular Momentum Goldstone Boson Casimir Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pink, D.A. and Tremblay, P. (1972). Can. J. Phys., 50, 1728.ADSCrossRefGoogle Scholar
  2. 2.
    Pink, D.A. and Ballard, R. (1974). Can. J. Phys., 52, 33.ADSCrossRefGoogle Scholar
  3. 3.
    Sivardière, J. (To be published).Google Scholar
  4. 4.
    Murao, T. and Matsubara, T. (1968). J. Phys. Soc. Japan, 25, 352.ADSCrossRefGoogle Scholar
  5. 5.
    Raich, J.C. and Etters, R.D. (1968). Phys. Rev., 168, 425.ADSCrossRefGoogle Scholar
  6. 6.
    Haley, S.B. and Erdös, P. (1972). Phys. Reo., B5, 1106.ADSGoogle Scholar
  7. 7.
    Westwański, B. and Pawlikowski, A. (1973). Phys. Lett., A43, 201.ADSGoogle Scholar
  8. 8.
    Westwański, B. (1973). Phys. Lett., A44, 27.ADSGoogle Scholar
  9. 9.
    Westwański, B. (Preprint E4-7486, JINR).Google Scholar
  10. 10.
    Wortis, M. (1963). Phys. Rev., 132, 85.MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Hanus, J. (1963). Phys. Rev. Lett., 11, 336.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Peter M. Levy
    • 1
  1. 1.Department of PhysicsNew York UniversityNew YorkUSA

Personalised recommendations