Advertisement

Regulation of Liver Plasma Membrane Ca2+ Pump

  • Sophie Lotersztajn
  • Catherine Pavoine
  • Ariane Mallat
  • Françoise Pecker
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 232)

Abstract

In mammalian tissues, Na2+/Ca2+ exchange and ATP-dependent Ca2+ pump supported by a (Ca2+-Mg2+)ATPase, both located in the plasma membranes, are the two mechanisms responsible for extrusion of Ca2+ out of the cell against its electrochemical gradient (for a review, see ref. 1). The extracellular free Ca2+ concentration is about 104 times that of intracellular free Ca2+ (50–200 nM). Therefore, the maintenance of a low intracellular free Ca2+ level is critical to preserve the integrity of the cell and its responsiveness to multiple external stimuli. It is now well established that a wide variety of hormones and neurotransmitters exert their effects by mobilizing Ca2+ from intracellular stores, namely endoplasmic reticulum1. The resulting increase in free cytosolic Ca2+ is supposed to be the signal which initiates cellular responses1. However, considering the limited capacity of intracellular stores and the maintenance of elevated Ca2+ after the stimulus, one may assume that inhibition of the liver Ca2+ pump by Ca2+ mobilizing hormones explain the prolonged physiological responses. The purpose of the present report is to make the point on our recent results concerning the liver plasma membrane Ca2+ pump and its regulation.

Keywords

ATPase Activity Adenylate Cyclase Cholera Toxin Phospholipid Vesicle Liver Plasma Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Rasmussen, The calcium messenger system (first of two parts), New. Engl. J. Med., 314:1094–1101 (1986).PubMedCrossRefGoogle Scholar
  2. 2.
    S. Lotersztajn, J. Hanoune, and F. Pecker, A high affinity calcium-stimulated magnesium-dependent ATPase in rat liver plasma membranes, J. Biol. Chem., 256:11209–11215 (1981).PubMedGoogle Scholar
  3. 3.
    S. Lotersztajn, R. Epand, A. Mallat, and F. Pecker, Inhibition by glucagon of the calcium pump in liver plasma membranes, J. Biol. Chem., 259:8195–8201 (1984).PubMedGoogle Scholar
  4. 4.
    D.M. Neville, Isolation of an organ specific protein antigen from cell-surface membrane of rat liver, Biochim. Biophys. Acta., 154: 540–552 (1968).PubMedCrossRefGoogle Scholar
  5. 5.
    K.M. Chan, and K.D. Junger, Calcium transport and phosphorylated intermediate of (Ca2+-Mg2+)ATPase in plasma membranes of rat liver, J. Biol. Chem., 258:4404–4410 (1983).PubMedGoogle Scholar
  6. 6.
    S.J. Pilkis, J.H. Exton, R.A. Johnson, and C.R. Park, Effects of glucagon on cyclic AMP and carbohydrate metabolism in livers from diabetic rats, Biochim. Biophys. Acta., 343:250–267 (1974).PubMedCrossRefGoogle Scholar
  7. 7.
    C. Pavoine, S. Lotersztajn, A. Mallat, and F. Pecker, The high affinity (Ca2+-Mg2+) ATPase in liver plasma membranes is a Ca2+ pump. Reconstitution of the purified enzyme into phospholipid vesicles, Submitted for publication.Google Scholar
  8. 8.
    S. Lotersztajn, A. Mallat, C. Pavoine, and F. Pecker, The inhibitor of liver plasma membrane (Ca2+-Mg2+)ATPase. Purification and identification as a mediator of glucagon action, J. Biol. Chem., 260:9692–9696 (1986).Google Scholar
  9. 9.
    J.T. Penniston, Plasma membrane Ca2+-ATPases as active Ca2+ pumps, in: “Calcium and Cell Function”, W.Y. Cheung, ed., Academic Press, New York 4:99–151 (1983).Google Scholar
  10. 10.
    N. Kraus-Friedmann, J. Biber, H. Murer, and E. Carafoli, Calcium uptake in isolated hepatic plasma membrane vesicles, Eur. J. Biochem., 129:7–12 (1982).PubMedCrossRefGoogle Scholar
  11. 11.
    A.K. Verma, and J.T. Penniston, A high affinity Ca2+-stimulated and Mg2+-dependent ATPase in rat corpus luteum plasma membrane fractions, J. Biol. Chem., 256:1269–1275 (1981).PubMedGoogle Scholar
  12. 12.
    E. Murray, J.P. Gorski, and J.T. Penniston, High affinity Ca2+-stimulated and Mg2+ dependent ATPase from rat osteosarcoma plasma membranes, Biochem. Int., 6:527–533 (1983).PubMedGoogle Scholar
  13. 13.
    C.Y. Kwan, and P. Kostka, A Mg2+-independent high affinity Ca2+-stimulated adenosine triphosphatase in the plasma membrane of rat stomach smooth muscle, Biochim. Biophys. Acta., 776:209–216 (1984).PubMedCrossRefGoogle Scholar
  14. 14.
    D.L. Ochs, and P.W. Reed, Ca2+-stimulated Mg2+-dependent ATPase activity in neutrophil plasma membrane vesicles. J. Biol. Chem., 259:102–106 (1984).PubMedGoogle Scholar
  15. 15.
    V. Prpic, K.C. Green, P.F. Blackmore, and J.H. Exton, Vasopressin-angiotensin II-and alphal-adrenergic-induced inhibition of Ca2+ transport by rat liver plasma membrane vesicles. J. Biol. Chem., 259:1382–1385 (1984).PubMedGoogle Scholar
  16. 16.
    E. Carafoli, Calmodulin-sensitive calcium-pumping ATPase of plasma membranes: isolation, reconstitution and regulation, Fed. Proc, 43:3005–3010.Google Scholar
  17. 17.
    H. Haaker, and E. Racker, Purification and reconstitution of the Ca2+ ATPase from plasma membranes of pig erythrocytes, J. Biol. Chem., 254:6598–6602.Google Scholar
  18. 18.
    S. Lotersztajn, and F. Pecker, A membrane-bound protein inhibitor of the high affinity CaATPase in rat liver plasma membranes. J. Biol. Chem., 257:6638–6641 (1982).PubMedGoogle Scholar
  19. 19.
    A.G. Gilman, G proteins and dual control of adenylate cyclase, Cell, 36:577–579 (1984).PubMedCrossRefGoogle Scholar
  20. 20.
    H.R. Bourne, One molecular machine can transduce diverse signals, Nature, 321:814–816 (1986).PubMedCrossRefGoogle Scholar
  21. 21.
    S. Lotersztajn, C. Pavoine, A. Mallat, and P. Pecker, Cholera toxin blocks glucagon-mediated inhibition of the liver plasma membrane (Ca2+-Mg2+)ATPase, Submitted for publication.Google Scholar
  22. 22.
    S.H. Lin, The rat liver plasma membrane high affinity (Ca2+-Mg2+)ATPase is not a calcium pump, J. Biol. Chem., 260: 10976–10980 (1985).PubMedGoogle Scholar
  23. 23.
    H.J. Schatzmann, and G.L. Rossi, (Ca2+-Mg2+)-activated membrane ATPase in human red cells and their possible relations to cation transport, Biochim. Biophys. Acta., 241:379–392 (1971).PubMedCrossRefGoogle Scholar
  24. 24.
    O. Bachs, K.S. Famulski, F. Mirabelli, and E. Carafoli, ATP-dependent Ca2+ transport in vesicles isolated from the bile canalicular region of the hepatocyte plasma membrane, Eur. J. Biochem., 147:1–7 (1985).PubMedCrossRefGoogle Scholar
  25. 25.
    Y. Iwasa, T. Iwasa, K. Higashi, K. Matsu, and E. Migamoto, Demonstration of a high affinity Ca2+-ATPase in rat liver plasma membranes, Biochem. Biophys. Res. Commun., 105:488–494 (1982).PubMedCrossRefGoogle Scholar
  26. 26.
    R. Lester, G. Hugentobler, C. Evers, P. Omaj, P.J. Meier, and H. Murer, The liver plasma membrane calcium pump is located at the basolateral surface of rat hepatocytes, Hepatol., N6:58 (1986).Google Scholar
  27. 27.
    S.H. Lin, Novel, ATP-dependent calcium transport component from rat liver plasma membranes. The transporter and the previously reported (Ca2+-Mg2+)ATPase are different proteins, J. Biol. Chem., 260:7850–7856 (1985).PubMedGoogle Scholar
  28. 28.
    M.J.O. Wakelam, G.J. Murphy, G.J. Hruby, and M.D. Houslay, Activation of two signal-transduction systems in hepatocytes by glucagon, Nature, 323:68–71 (1986).PubMedCrossRefGoogle Scholar
  29. 29.
    S.H. Lin, M.A. Wallace, and J.N. Fain, Regulation of (Ca2+-Mg2+)ATPase activity in hepatocyte plasma membranes by vasopressin and phenylephrine, Endocrinol., 113: 2268–2275 (1982).CrossRefGoogle Scholar
  30. 30.
    R.P. Aksamit, P.S. Jr. Backlund, and G.L. Cantoni, Cholera toxin inhibits Chemotaxis by a cAMP-independent mechanism, Proc. Natl. Acad. Sci., 82:7475–7479 (1985).PubMedCrossRefGoogle Scholar
  31. 31.
    C.M. Heyworth, A.D. Whetton, S. Wong, B.R. Martin, and M.D. Houslay, Insulin inhibits the cholera toxin-catalysed ribosylation of a Mr 25,000 protein in rat liver plasma membranes, Biochem. J., 228:593–603 (1985).PubMedGoogle Scholar
  32. 32.
    J.B. Imboden, D.M. Shoback, G. Pattison, and J.D. Stobo, Cholera toxin inhibits the T-cell antigen receptor-mediated increases in inositol triphosphate and cytoplasmic free Ca2+, Proc. Natl. Sci., 83:5673–5677 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Sophie Lotersztajn
    • 1
  • Catherine Pavoine
    • 1
  • Ariane Mallat
    • 1
  • Françoise Pecker
    • 1
  1. 1.Unité INSERM 99 hôpital Henri MondorCréteilFrance

Personalised recommendations