Advertisement

The Hepatic Microsomal Ca2+ Sequestering System

  • Naomi Kraus-Friedmann
  • C. Ricky Fleschner
  • Piotr Zimniak
  • Pamela Moore
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 232)

Abstract

The hepatic microsomal Ca2+ sequestering system is analogous to that of sarcoplasmic reticulum and fulfills a similar role to it; namely, regulation of cytoplasmic Ca2+ concentration. It does so by taking up Ca2+ in an ATP dependent manner and releases it by either the reversal of the uptake process and/or by a different, unknown mechanism.

Keywords

ATPase Activity Sarcoplasmic Reticulum Microsomal Fraction Coupling Factor Microsomal Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moore, L., Chen, T., Knapp, H.R. Jr. and Landon E.J. Energy-dependent calcium sequestration activity in rat liver, microsomes. J. Biol. Chem. 250, 4562–4568, 1974.Google Scholar
  2. 2.
    Bygrave, F.L. Properties of energy-dependent calcium transport by rat liver microsomal fraction as revealed by initial-rate measurements. Biochem J. 170, 87–91, 1978.PubMedGoogle Scholar
  3. 3.
    Dawson, A.P. Kinetic properties of the Ca2+ accumulation system of a rat liver microsomal fraction. Biochem. J. 206, 73–79, 1982.PubMedGoogle Scholar
  4. 4.
    Famulski, K. and Carafoli, E. Ca2+ transporting activity of membrane fractions isolated from the post mitochondrial supernatant of rat liver. Cell Calcium 3, 263–281, 1982.PubMedCrossRefGoogle Scholar
  5. 5.
    Andia-Waltenbaugh, A.M. and Friedmann, N. Hormone sensitive calcium uptake by liver microsomes. Biochem. Biophys. Res. Comm. 82, 603–608, 1978.CrossRefGoogle Scholar
  6. 6.
    Andia-Waltenbaugh, A.M., Lam, A. Hummel, L. and Friedmann, N. Characterization of the hormone-sensitive Ca2+ uptake activity of the hepatic endoplasmic reticulum. Biochim. Biophys. Acta 630, 165–175, 1980.PubMedCrossRefGoogle Scholar
  7. 7.
    Fleschner, CR., Kraus-Friedmann, N. and Wibert, G.J. Phosphorylated intermediates of two hepatic microsomal ATPase. Biochem. J. 226, 839–845, 1985.PubMedGoogle Scholar
  8. 8.
    Fleschner, C.R. and Kraus-Friedmann, N. The effect of Mg2+ on hepatic microsomal Ca2+ and Sr2+ transport. Eur. J. Biochem. 154, 313–320, 1986.PubMedCrossRefGoogle Scholar
  9. 9.
    De Meis, L.D. and Inesi, G. The transport of calcium by sarcoplasmic reticulum and various microsomal preparations. In: Membrane Transport of Calcium (E. Carafoli, ed.), pp. 141–186, Academic Press, London, 1982.Google Scholar
  10. 10.
    Martonosi, A. and Feretos, R. Sarcoplasmic reticulum. II. Correlation between adenosine triphosphatase activity and Ca2+ uptake. J. Biol. Chem. 239, 659–668, 1964.PubMedGoogle Scholar
  11. 11.
    Heilmann, C., Spanner, C. and Gerok, W. The calcium pump in rat liver endoplasmic reticulum. Demonstration of the phosphorylated intermediate. J. Biol. Chem. 259, 11139–11144, 1984.PubMedGoogle Scholar
  12. 12.
    Fleschner, CR. and Kraus-Friedmann, N. Inhibition of rat liver microsomal Ca2+ ATPase by fluorescein S-isothiocyanate. (Submitted).Google Scholar
  13. 13.
    Lin, S.-H. Novel ATP-dependent calcium transport component from rat liver plasma membranes. J. Biol. Chem. 260, 7850–7856, 1985.PubMedGoogle Scholar
  14. 14.
    Lin, S.-H. and Fain, J.N. Purification of (Ca2+-Mg2+)-ATPase from rat liver plasma membranes. J. Biol. Chem. 259, 3016–3020, 1984.PubMedGoogle Scholar
  15. 15.
    Racker, E. and Eytan, E. A coupling factor from sarcoplasmic reticulum required for the translocation of Ca2+ ions in a reconstituted Ca2+ ATPase pump. J. Biol. Chem. 250, 7533–7534, 1975.PubMedGoogle Scholar
  16. 16.
    Leonard, S.K., and Kutchai, H. Coupling of Ca2+ transport to ATP hydrolysis by Ca2+ ATPase of sarcoplasmic reticulum potential role of the 53-kilodalton glycoprotein. Biochemistry 24, 4876–4884, 1985.CrossRefGoogle Scholar
  17. 17.
    Pick, U. Interaction of fluorescein isothiocyanate with nucleotide-binding sites of the Ca2+-ATPase from sarcoplasmic reticulum. Eur. J. Biochem. 121, 187–195 (1981).PubMedCrossRefGoogle Scholar
  18. 18.
    Mitchinson, C., Wilderspin, A.F., Tinnamann, B.J. and Green, N.M. Identification of a labeled peptide after stoichiometric reaction of fluorescein isothiocyanate with the Ca2+ dependent adenosine triphosphatase of sarcoplasmic reticulum. FEBS Lett. 146, 87–92, 1982.PubMedCrossRefGoogle Scholar
  19. 19.
    Chiesi, M. and Carafoli, E. Role of calmodulin in skeletal muscle sarcoplasmic reticulum. Biochemistry 22, 985–993, 1983.PubMedCrossRefGoogle Scholar
  20. 20.
    Campbell, K.P. and MacLennan, D.H. A calmodulin-dependent protein kinase system from skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 257, 1238–1246, 1982.PubMedGoogle Scholar
  21. 21.
    Tuana, B.S. and MacLennan, D.H. Calmidazolium and compound 48/80 inhibit calmodulin-depend protein phosphorylation and ATP-dependent Ca2+-uptake but not Ca2+ ATPase activity in skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 259, 6979–6983, 1984.PubMedGoogle Scholar
  22. 22.
    Louis, C.F. and Maffitt, M. Characterization of calmodulin-mediated phosphorylation of cardiac muscle sarcoplasmic reticulum. Arch. Biochem. Biophys. 218, 109–118, 1982.PubMedCrossRefGoogle Scholar
  23. 23.
    Kirchberger, M.A. and Antoneta, T. Calmodulin-mediated regulation of calcum transport and (Ca2+ + Mg2+) activated ATPase activity in isolated cardiac sarcoplasmic reticulum. J. Biol. Chem. 257, 5685–5691, 1982.PubMedGoogle Scholar
  24. 24.
    Plank, B., Wyskowsky, W., Helmann, G. and Suko, J. Calmodulin-dependent elevation of calcium-transport associated with calmodulin dependent phosphorylation in cardiac sarcoplasmic reticulum. Biochim. Biophys. Acta. 732, 99–109, 1983.PubMedCrossRefGoogle Scholar
  25. 25.
    Moore, P.B. and Kraus-Friedmann, N. Hepatic microsomal Ca2+ ATPase. Biochem. J. 214, 69–75, 1983.PubMedGoogle Scholar
  26. 26.
    Famulski, K.F. and Carafoli, E. Calmodulin-dependent protein phosphorylation and calcium uptake in rat-liver microsomes. Eur. J. Biochem. 141, 15–20, 1984.PubMedCrossRefGoogle Scholar
  27. 27.
    Dawson, A.P. and Fulton, D.W. Some properties of the Ca2+-stimulated ATPase of a rat liver microsomal fraction. Biochem. J. 210, 405–410, 1983.PubMedGoogle Scholar
  28. 28.
    Kraus-Friedmann, N. and Zimniak, P. Glucagon and epinephrine stimulated phospholipid methylation in hepatic microsomes. Life Sciences 28:1483–1488, 1981.PubMedCrossRefGoogle Scholar
  29. 29.
    Kraus-Friedmann, N. and Zimniak, P. 45ca2+ uptake and phospholipid methylation in isolated rat liver microsomes. Cell Calcium 4, 139–150, 1983.PubMedCrossRefGoogle Scholar
  30. 30.
    Burgess, G.M., Godfrey, P.P., McKinney, J.S., Berridge, M.J., Irvine, R.F. and Putney, J.W., Jr. The second messenger linking receptor activation to internal Ca release in liver. Nature, 309, 63–66, 1984.PubMedCrossRefGoogle Scholar
  31. 31.
    Friedmann, N. and Park, C.R. Early effects of 3–5′ AMP on the fluxes of calcium and potassium in the perfused liver of normal and adrenalectomized rats. Proc. Natl. Acad. Sci. USA 61, 504–508, 1968.PubMedCrossRefGoogle Scholar
  32. 32.
    Kraus-Friedmann, N. Hormonal regulation of hepatic gluconeogenesis. Physiol. Rev. 64, 170–259, 1984.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Naomi Kraus-Friedmann
    • 1
  • C. Ricky Fleschner
    • 1
  • Piotr Zimniak
    • 1
  • Pamela Moore
    • 1
  1. 1.Dept. of Physiology and Cell BiologyUniversity of Texas Medical SchoolHoustonUSA

Personalised recommendations