Skip to main content

Permeability Pathways of Ca2+ Efflux from Mitochondria: H+ Specificity and Reversibility of the Permeability Defect

  • Chapter
Cellular Ca2+ Regulation

Abstract

During the 1970’s it was established that the inner membrane of isolated mitochondria from adrenal cortex, heart, and liver can display an unusually high permeability to small molecules and ions following the imposition of certain metabolic conditions (1–10). Generally, what is required to produce the permeable inner membrane state is energy-dependent Ca2+ accumulation preceding or following the administration of another agent which is often referred to as a “Ca2+ -releasing agent” (11–14). Substances possessing “Ca2+-releasing agent” activity normally lack detergent properties and are diverse with respect to their chemical properties and biological activities. The “Ca2+-releasing agents” investigated by our group include N-ethylmaleimide (5, 6, 11, 13, 15), t-butylhydroperoxide (14–16), oxalacetate, (11), inorganic phosphate (11, 13), rhein (16), and hypolipidemic drugs such as WY-14643 and dofibric acid (17).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. R. Pfeiffer and T. T. Tchen, 1973, The role of Ca2+ in control of malic enzyme activity in bovine adrenal cortex mitochondria, Biochem. Biophys. Res. Commun., 50:807.

    Article  PubMed  CAS  Google Scholar 

  2. D. R. Pfeiffer and T. T. Tchen, 1975, The activation of adrenal cortex mitochondrial malic enzyme by Ca2+ and Mg2+, Biochemistry, 14:89.

    Article  PubMed  CAS  Google Scholar 

  3. D. R. Hunter, R. A. Haworth, and J. H. Southard, 1976, Relationship between configuration, function and permeability in calcium-treated mitochondria, J. Biol. Chem., 251:5069.

    PubMed  CAS  Google Scholar 

  4. D. R. Pfeiffer, T. H. Kuo, and T. T. Tchen, 1976, Some effects of Ca2+, Mg2+ and Mn2+ on the ultrastructural, light-scattering properties and malic enzyme activity of adrenal cortex mitochondria, Arch. Biochem. Biophvs., 176:556.

    Article  CAS  Google Scholar 

  5. D. R. Pfeiffer, R. F. Kauffman, and H. A. Lardy, 1978, Effects of N-ethylmaleimide on the limited uptake of Ca2+, Mn2+ and Sr2+ by rat liver mitochondria, J. Biol. Chem., 253:4165.

    PubMed  CAS  Google Scholar 

  6. D. R. Pfeiffer, P. C. Schmid, M. C. Beatrice, and H. H. O. Schmid, 1979, Intramitochondrial phospholipase activity and the effects of Ca2+ plus N-ethylmaleimide on mitochondrial function, J. Biol. Chem., 254:11485.

    PubMed  CAS  Google Scholar 

  7. D. R. Hunter and R. A. Haworth, 1979, The Ca2+-induced membrane transition in mitochondria; I. the protective mechanisms, Arch. Biochem. Biophys., 195:453.

    Article  PubMed  CAS  Google Scholar 

  8. R. A. Haworth and D. R. Hunter, 1979, The Ca2+-induced membrane transition in mitochondria; II. nature of the trigger site, Arch. Biochem. Biophvs.. 195:460.

    Article  CAS  Google Scholar 

  9. D. R. Hunter and R. A. Haworth, 1979, The Ca2+-induced membrane transition in mitochondria; III. transitional Ca2+ release, Arch. Biochem. Biophys., 195:468.

    Article  PubMed  CAS  Google Scholar 

  10. E. J. Harris, M. Al-Shaikhaly, and H. Baum, 1979, Stimulation of mitochondrial calcium ion efflux by thiol-specific reagents and by thyroxine. The relationship to adenosine diphosphate retention and to mitochondrial permeability, Biochem. J. 182:455.

    PubMed  CAS  Google Scholar 

  11. M. C. Beatrice, J. W. Palmer, and D. R. Pfeiffer, 1980, The relationship between mitochondrial membrane permeability, membrane potential, and the retention of Ca2+ by mitochondria, J. Biol. Chem., 255:8663.

    PubMed  CAS  Google Scholar 

  12. E. J. Harris and H. Baum, 1980, Production of thiol groups and retention of calcium ions by cardiac mitochondria, Biochem, J., 186:725.

    CAS  Google Scholar 

  13. J. W. Palmer and D. R. Pfeiffer, 1981, The control of Ca2+ release from heart mitochondria, J. Biol. Chem.. 256:6742.

    PubMed  CAS  Google Scholar 

  14. M. C. Beatrice, D. L. Stiers, and D. R. Pfeiffer, 1982, Increased permeability of mitochondria during Ca2+ release induced by t-butylhydroperoxide or oxalacetate. The effect of ruthenium red, J. Biol. Chem. 257:7161.

    PubMed  CAS  Google Scholar 

  15. W. W. Riley, Jr. and D. R. Pfeiffer, 1985, Relationships between Ca2+ release, Ca2+ cycling, and Ca2+-mediated permeability changes in mitochondria, J. Biol. Chem., 260:12416.

    PubMed  CAS  Google Scholar 

  16. M. C. Beatrice, D. L. Stiers, and D. R. Pfeiffer, 1984, The role of glutathione in the retention of Ca2+ by liver mitochondria, J. Biol. Chem., 259:1279.

    PubMed  CAS  Google Scholar 

  17. W. W. Riley, Jr. and D. R. Pfeiffer, 1986, The effect of Ca2+ and acyl-Coenzyme A:lysophospholipid acyltransferase inhibitors on permeability properties of the liver mitochondrial inner membrane, J. Biol. Chem., 261:14018.

    PubMed  CAS  Google Scholar 

  18. D. R. Pfeiffer, J. W. Palmer, M. C. Beatrice, and D. L. Stiers, 1983, The mechanism and regulation of Ca2+ efflux from mitochondria, in: “The Biochemistry of Metabolic Processes,” D. F. L. Lenon et al., eds., Elsevier North-Holland, Inc., New York, pp. 67–80.

    Google Scholar 

  19. K. M. Broekemeier, P. C. Schmid, H. H. O. Schmid, and D. R. Pfeiffer, 1985, Effects of phospholipase A2 inhibitors on ruthenium redinduced Ca2+ release from mitochondria, J. Biol. Chenu, 260:105.

    CAS  Google Scholar 

  20. T. Okayasu, M. T. Curtis, and J. L. Farber, 1985, Structural alterations of the inner mitochondrial membrane in ischemic liver cell injury, Arch. Biochem. Biophvs., 236:638.

    Article  CAS  Google Scholar 

  21. P. E. Starke, J. B. Hoek, and J. L. Farber, 1986, Calcium-dependent and calciurn-independent mechanisms of irreversible cell injury in cultured hepatocytes, J. Biol. Chem., 261:3006.

    PubMed  CAS  Google Scholar 

  22. J. R. Aprille, 1977, Reye’s syndrome: patient serum alters mitochondrial function and morphology in vitro, Science, 197:908.

    Article  PubMed  CAS  Google Scholar 

  23. T. Y. Segalman and C. P. Lee, 1982, Reye’s syndrome: plasma-induced alterations in mitochondrial structure and function, Arch. Biochem. Biophvs. 214:522.

    Article  CAS  Google Scholar 

  24. K.-Sa You, 1983, Salicylate and mitochondrial injury in Reye’s syndrome, 1983, Science, 221:163.

    Article  PubMed  CAS  Google Scholar 

  25. M. E. Martens, C. H. Chang, and C. P. Lee, 1986, Reye’s syndrome: mitochondrial swelling and Ca2+ release induced by Reye’s plasma, allantoin, and salicylates, Arch. Biochem. Biophvs. 244:773.

    Article  CAS  Google Scholar 

  26. K. S. Cheah and A. M. Cheah, 1981, Skeletal muscle mitochondrial phospholipase A2 and the interaction of mitochondrial and sarcoplasmic reticulum in porcine malignant hyperthermia, Biochim. Biophys. Acta, 638:40.

    Article  PubMed  CAS  Google Scholar 

  27. K. S. Cheah, 1984, Skeletal-muscle mitochondria and phospholipase A2 in malignant hyperthermia, Biochem. Soc. Trans., 12:358.

    PubMed  CAS  Google Scholar 

  28. P. C. Schmid, D. R. Pfeiffer, and H. H. O. Schmid, 1981, Quantitation of lysophosphatidylethanolamine in the nanomole range, J. Lipid Res., 22:882.

    PubMed  CAS  Google Scholar 

  29. A. Boveris, R. Oshino, M. Erecinska, and B. Chance, 1971, Reduction of mitochondrial components by durohydroquinone, Biochim. Biophys. Acta, 245:1.

    Article  PubMed  CAS  Google Scholar 

  30. J. F. Hare and F. L. Crane, 1971, A durohydroquinone oxidation site in the mitochondrial transport chain, Bioenergetics, 2:317.

    Article  CAS  Google Scholar 

  31. R. A. Haworth and D. R. Hunter, 1987, Allosteric inhibition of the Ca2+-activated hydrophilic channel of the mitochondrial inner membrane by nucleotides, J. Membr. Biol., 54:231.

    Google Scholar 

  32. I. Al-Nasser and M. Crompton, 1986, The reversible Ca2+-induced permeabilization of rat liver mitochondria, Biochem. J., 239:19.

    PubMed  CAS  Google Scholar 

  33. I. Al-Nasser and M. Crompton, 1986, The entrapment of the Ca2+ indicator arsenazo III in the matrix space of rat liver mitochondria by permeabilization and resealing, Biochem. J., 239:31.

    PubMed  CAS  Google Scholar 

  34. L. H. Hayat and M. Crompton, 1987, The effects of Mg2+ and adenine nucleotides on the sensitivity of the heart mitochondrial Na2+-Ca2+ carrier to extramitochondrial Ca2+, Biochem. J., 244:533.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Pfeiffer, D.R., Broekemeier, K.M., Igbavboa, U., Reers, M., Riley, W.W. (1988). Permeability Pathways of Ca2+ Efflux from Mitochondria: H+ Specificity and Reversibility of the Permeability Defect. In: Pfeiffer, D.R., McMillin, J.B., Little, S. (eds) Cellular Ca2+ Regulation. Advances in Experimental Medicine and Biology, vol 232. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0007-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0007-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0009-1

  • Online ISBN: 978-1-4757-0007-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics