Abnormal Ca2+ Transport Characteristics of Hepatoma Mitochondria and Endoplasmic Reticulum

  • Anne N. Murphy
  • Gary Fiskum
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 232)


The oncogenic transformation of cells from a normal to malignant phenotype is associated with a variety of experimentally discernible changes in the pattern of metabolism. Many of these alterations involve processes modulated by the intracellular level and distribution of calcium. In addition to increased growth rates, Ca2+ may play a specific role in the increased rates of aerobic glycolysis (Cittadini et al., 1981), elevated rates of cholesterol synthesis (Beg et al., 1985), and alterations in cytoskeletal organization and function (Ben-Ze’ev, 1985). Given these and other observations of alterations of cellular processes associated with malignancy, the general hypothesis has surfaced that tumor cell calcium metabolism is abnormal.


Pyridine Nucleotide Ehrlich Ascites Tumor Cell Inositol Trisphosphate Adenine Nucleotide Transport Tumor Mitochondrion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arslan, P., DiVirgilio, F., Beltrame, M., Tsien, R. and Pozzan, T., 1985, Cytosolic Ca2+ homeostasis in Erhlich and Yoshida carcinomas, J. Biol. Chem., 260: 2719–2727.PubMedGoogle Scholar
  2. Beg, Z.H., Stonik, J.A. and Brewer, H.B., Jr., 1985, Phosphorylation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase and modulation of its enzymic activity by calcium-activated and phospholipid-dependent protein kinase, J. Biol. Chem., 260: 1682–1687.PubMedGoogle Scholar
  3. Ben-Ze’ev, A., 1985, The cytoskeleton in cancer cells, Biochem. Biophys. Acta, 780: 197–212.Google Scholar
  4. Bernardes, C.F., da Silva, L.P. and Vercesi, A.E., 1986, t-Butylhydroperoxide-induced Ca2+ efflux from liver mitochondria in the presence of physiological concentrations of Mg2+ and ATP, Biochem, Biophys.Acta, 850: 41–48.CrossRefGoogle Scholar
  5. Berridge, M.J. and Irvine, R.F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature, 312: 315–321.PubMedCrossRefGoogle Scholar
  6. Broekemeier, K.M., Schmid, P.C., Schmid, H.H.O., and Pfeiffer, D.R., 1985, Effects of phospholipase inhibitors on ruthenium red-induced Ca2+ release from mitochondria, J. Biol. Chem., 260:105–113.PubMedGoogle Scholar
  7. Cittadini, A., Bossi, D., Dani, A.M., Calviello, G., Wolf, F. and Terranova, T., 1981, Lack of effect of the Ca2+ ionophore A23187 on tumor cells, Biochem, Biophys, Acta, 645: 177–182.CrossRefGoogle Scholar
  8. Cittadini, A., Dani, A.M., Wolf, F., Bossi, D. and Calviello, G., 1982, Calcium permeability of Ehrlich ascites tumor cell plasma membrane in vivo, Biochem. Biophys. Acta, 686: 27–35.PubMedCrossRefGoogle Scholar
  9. Farber, J.L., 1982, Biology of disease: membrane injury and calcium homeostasis in the pathogenesis of coagulative necrosis, Lab Invest., 47: 114–123.PubMedGoogle Scholar
  10. Fiskum, G., 1985, Intracellular levels and distribution of Ca2+ in digitonin-permeabilized cells, Cell Calcium, 6: 25–37.PubMedCrossRefGoogle Scholar
  11. Fiskum, G. and Cockrell, R.S., 1985, Uncoupler-stimulated release of Ca2+ from Ehrlich ascites tumor cell mitochondria, Arch. Biochem. Biophys., 240: 723–733.PubMedCrossRefGoogle Scholar
  12. Fiskum, G. and Lehninger, A.L., 1979 Regulated release of Ca2+ release from mitochondria by Ca2+ /2H+ antiport, J. Biol. Chem., 254: 6236–6239.Google Scholar
  13. Fiskum, G. and Pease, A., 1986, Hydroperoxide-stimulated release of calcium from rat liver and AS-30D hepatoma mitochondria, Canc. Res., 46: 3459–3463.Google Scholar
  14. Fleschner, C.R., Martin, A.P., Vorbeck, M.L, Darnold, J.R. and Long, J.W., Jr., 1983, Ca2+ release from energetically campled tumor mitochondria, Biochem, Biophys. Res. Commun., 115: 430–436.CrossRefGoogle Scholar
  15. Hansford, R.G., 1985, Relation between mitochondrial calcium transport and control of energy metabolism, Rev. Physiol. Biochem. Pharmacol., 102: 1–72.PubMedCrossRefGoogle Scholar
  16. Hickie, R.A. and Kalant, H., 1967, Calcium and magnesium content of rat liver and Morris hepatoma 5123tc, Canc. Res., 27: 1053–1057.Google Scholar
  17. Joseph, S.K., Williams, R.J., Corkey, B.E., Matschinsky, F.M. and Williamson, J.R., 1984, The effect of inositol trisphosphate on Ca fluxes in insulin secreting tumor cells, J. Biol. Chem., 259: 12952–12955.PubMedGoogle Scholar
  18. Kennedy, K.A., Teicher, B.A., Rockwell, S. and Sartorelli, A.C., 1980, The hypoxic tumor cell: a target for selective cancer chemotherapy, Biochem. Pharm., 29: 1–8.PubMedCrossRefGoogle Scholar
  19. Lau, B.W.C., Weber, L, Maggio, M. and Chan, S.H.P., 1984, Elevated content of cholesterol affects adenine nucleotide transport in tumor mitochondria, Fed. Proc, 43: 1876.Google Scholar
  20. Lehninger, A.L., Vercesi, A. and Bababunmi, E.A., 1978, Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides, Proc. Natl. Acad. Sci. USA, 75: 1690–1694.PubMedCrossRefGoogle Scholar
  21. Lotscher, H.R., Winterhalter, K.H., Carafoli, E. and Richter, C., 1979, Hydroperoxides can moderate the redox state of pyridine nucleotides and the calcium balance in rat liver mitochondria, Proc. Natl. Acad. Sci. USA, 76: 4340–4344.PubMedCrossRefGoogle Scholar
  22. Macara, I.G., 1985, Oncogenes, ions, and phospholipids, Am. J. Physiol., 248: C3–C11.PubMedGoogle Scholar
  23. Means, A.R., Tash, J.S. and Chafouleas, J.G., 1982, Physiological implications of the presence, distribution and regulation of calmodulin in eukaryotic cells, Physiol. Rev., 62: 1–39.PubMedGoogle Scholar
  24. Moulder, J.E. and S.J. Rockwell, 1984, Hypoxic fractions of solid tumors: experimental techniques, methods of analysis, and a survey of existing data, Int. J. Radiat. Oncol. Biol. Phys., 10: 695–772.PubMedCrossRefGoogle Scholar
  25. Nichitta, C.V. and Williamson, J.R., 1984, Spermine: a regulator of mitochondrial calcium cycling, J. Biol. Chem., 259: 12978–12983.Google Scholar
  26. Nicholls, D.G. and Brand, M.D., 1980, The nature of the calcium ion efflux induced in rat liver mitochondria by the oxidation of endogenous nicotinamide nucleotides, Biochem. J., 188: 113–118.PubMedGoogle Scholar
  27. Ohnishi, T., Suzuki, Y. and Ozawa, K., 1982, A comparative study of plasma membrane Mg2+ ATPase activities in normal, regenerating and malignant cells, Biochim. Biophys. Acta, 684: 67–74.PubMedCrossRefGoogle Scholar
  28. Parlo, R.A. and Coleman, P.S., 1984, Enhanced rate of citrate export from cholesterol-rich hepatoma mitochondria: the tuncated Krebs cycle and other metabolic ramifications of mitochondrial membrane cholesterol, J. Biol. Chem., 259: 9997–10003.PubMedGoogle Scholar
  29. Sauer, L.A., Dauchy, R.T., Nagel, W.O. and Morris, H.P., 1980, Mitochondrial NAD(P)+-dependent malic enzyme activity and malate-dependent pyruvate formation are progression-linked in Morris hepatomas, J. Biol. Chem., 255: 3844–3848.PubMedGoogle Scholar
  30. Smith, D.F., Walborg, E.F. Jr., Chang, J.P, 1970, Establishment of a transplantable ascites variant of a rat hepatoma induced by 3′-methyl-4-dimethylaminoazobenzene, Canc. Res., 30: 2306–2309.Google Scholar
  31. Swierenga, S.H.H., Whitfield, J.F. and Karasaki, S., 1978, Loss of proliferative calcium dependence: simple in vitro indicator of tumorigenicity, Cell Biology, 75: 6069–6072.Google Scholar
  32. Villalobo, A. and Lehninger, A.L., 1980, Inhibition of oxidative phosphorylation in ascites tumor mitochondria and cells by intramitochondrial Ca2+, J. Biol. Chem., 255: 2457–2464.PubMedGoogle Scholar
  33. Woldegiorgis, G. and Shrago, E., 1985, Adenine nucleotide translocase activity and sensitivity to inhibitors, J. Biol. Chem., 260: 7585–7590.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Anne N. Murphy
    • 1
  • Gary Fiskum
    • 1
  1. 1.Department of BiochemistryGeorge Washington University School of MedicineUSA

Personalised recommendations