Na-Ca Exchange in Cardiac Sarcolemmal Vesicles

  • Carole A. Bailey
  • Philip Poronnik
  • John P. Reeves
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 232)


Every second of a heart cell’s existence is characterized by large fluctuations in the cytoplasmic concentration of calcium ions. Accordingly, heart cells exhibit a very sophisticated mechanism for the regulation of their cytoplasmic calcium concentration ([Ca2+]j), a system which involves the coordinated interaction of Ca2+ channels and pumps in the plasma membrane and intracellular organelles as well as Ca-binding proteins in both the cytoplasm and, of course, the myofibrillar apparatus itself. One element of this complex mechanism for regulating [Ca]j is the Na-Ca exchange system, a carrier-mediated transport process in which the movement of Ca2+ in one direction across the membrane is directly coupled to the movement of Na+ in the opposite direction. It is a component of the cardiac plasma membrane (sarcolemma) and mediates Ca2+ movements in either direction between the cell cytoplasm and the extracellular fluid. As discussed in detail elsewhere (1,2), its primary physiological role is probably to serve as a Ca2+ pump, i.e. to effect the net efflux of Ca2+ from the myocardial cell, although it seems likely that under some circumstances it can bring about the net entry of Ca2+ as well.


Vesicle Preparation Squid Axon Exchange Carrier Native Vesicle Redox Reagent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reeves, J.P., Curr. Topics Membr. Transp. 25:77–127 (1985).CrossRefGoogle Scholar
  2. 2.
    Reeves, J.P., in Stone, H.L. and Weglicki, W.B. (eds) “Pathobiology of Cardiovascular Injury”. (Martinus Nijhoff, Boston), pp. 232–244 (1985).CrossRefGoogle Scholar
  3. 3.
    Luttgau, H.C. and Niedergerke, R., J. Physiol. (London) 143:486–505 (1958).PubMedGoogle Scholar
  4. 4.
    Baker, P.F., Blaustein, M.P., Hodgkin, A.L. and Steinhardt, R.A. J. Phsiol. (London) 200:431–458 (1969).Google Scholar
  5. 5.
    Reuter, H. and Seitz, N., J. Physiol. (London) 195:451–470 (1968)PubMedGoogle Scholar
  6. 6.
    Baker, P.F. and Allen, T.J.A., in Bronner, F. and Peterlik, M. (eds) “Calcium and Phosphate Transport Across Biomembranes, Proceedings 2nd International Workshop”. (Liss, New York) pp. 89–94 (1984).Google Scholar
  7. 7.
    Blaustein, M.P. Biophys. J. 20:79–111 (1977).PubMedCrossRefGoogle Scholar
  8. 8.
    Baker, P.F. and McNaughton, P.A., J. Physiol. (London) 276:127–150 (1978).PubMedGoogle Scholar
  9. 9.
    Baker, P.F. and Glitsch, H.G., J. Physiol. (London) 233:44P–46P (1973).PubMedGoogle Scholar
  10. 10.
    DiPolo, R., J. Gen. Physiol. 73:91–113 (1979).PubMedCrossRefGoogle Scholar
  11. 11.
    Caroni, P. and Carafoli, E. Eur. J. Biochem. 132:451–460 (1983).PubMedCrossRefGoogle Scholar
  12. 12.
    Reeves, J.P. and Sutko, J.L., Proc. Natl. Acad. Sci. U.S.A. 76:590–594 (1979).PubMedCrossRefGoogle Scholar
  13. 13.
    Trumble, W.R., Reeves, J.P. and Sutko, J.L., Life Sci. 27:207–214 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    Trumble, W.R., Sutko, J.L. and Reeves, J.P., J. Biol. Chem. 256:7101–7104 (1981).PubMedGoogle Scholar
  15. 15.
    Caroni, P. and Carafoli, E., J. Biol. Chem. 256:3263–3270 (1981).PubMedGoogle Scholar
  16. 16.
    Pitts, B.J R., J. Biol. Chem. 254:6232–6235 (1979).PubMedGoogle Scholar
  17. 17.
    Reeves, J.P. and Sutko, J.L., Science 208:1461–1464 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    Reeves, J.P. and Hale, C.C, J. Biol. Chem. 259:7733–7739 (1984).PubMedGoogle Scholar
  19. 19.
    Reeves, J.P. and Poronnik, P., Am. J. Physiol. (in press) (1987).Google Scholar
  20. 20.
    de la Pena, P. and Reeves, J.P., Am. J. Physiol. (in press) (1987).Google Scholar
  21. 21.
    Philipson, K.D., Biochim. Biophys. Acta 821:367–376 (1985).PubMedCrossRefGoogle Scholar
  22. 22.
    Bailey, CA. and Reeves, J.P., Fed. Proc. (in press) (1987).Google Scholar
  23. 23.
    Slaughter, R., Welton, A. and Morgan, D., Biophys. J. 49:546a (1986).Google Scholar
  24. 24.
    Reeves, J.P., Bailey, C.A. and Hale, C.C, J. Biol. Chem. 261:4948–4955 (1986).PubMedGoogle Scholar
  25. 25.
    Bailey, CA. and Reeves, J.P., Biophys. J. 49:345a (1986)Google Scholar
  26. 26.
    Hale, C.C, Slaughter, R.S., Ahrens, D. and Reeves, J.P., Proc. Natl. Acad. Sci. U.S.A. 81:6569–6573 (1984).PubMedCrossRefGoogle Scholar
  27. 27.
    Carafoli, E., (personal communication).Google Scholar
  28. 28.
    Reeves, J.P., (unpublished observations).Google Scholar
  29. 29.
    Barzilai, A., Spanier, R. and Rahamimoff, H., Proc. Natl. Acad. Sci. U.S.A. 81:6521–6525 (1984).PubMedCrossRefGoogle Scholar
  30. 30.
    Soldati, L., Longoni, S. and Carafoli, E., J. Biol. Chem. 260:13321–13327 (1985).PubMedGoogle Scholar
  31. 31.
    Michalak, M., Quackenbush, E. J. and Letarte, M., J. Biol.Chem. 261:92–95 (1986).PubMedGoogle Scholar
  32. 32.
    Letarte, M., Quackenbush, E.J., Baumal, R. and Michalak, M., Biochem. Cell Biol. 64:1160–1169 (1986).PubMedCrossRefGoogle Scholar
  33. 33.
    Philipson, K.D. and Nishimoto, A.Y., Am. J. Physiol. 243:C191–C195 (1982).PubMedGoogle Scholar
  34. 34.
    Philipson, K.D. and Nishimoto, A.Y., J. Biol. Chem. 257:5111–5117 (1983).Google Scholar
  35. 35.
    Philipson, K.D. and Nishimoto, A.Y., J. Biol. Chem. 259:16–19 (1984).PubMedGoogle Scholar
  36. 36.
    Philipson, K. D., J. Biol. Chem. 259:13999–14002 (1984).PubMedGoogle Scholar
  37. 37.
    Philipson, K.D. and Ward, R., J. Biol. Chem. 260:9666–9671 (1985)PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Carole A. Bailey
    • 1
  • Philip Poronnik
    • 1
  • John P. Reeves
    • 1
  1. 1.Roche Institute of Molecular BiologyRoche Research CenterNutleyUSA

Personalised recommendations