Advertisement

Mechanisms of Mitochondrial Calcium Transport

  • Thomas E. Gunter
  • Douglas E. Wingrove
  • Srabani Banerjee
  • Karlene K. Gunter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 232)

Abstract

Mitochondria are known to possess a rapid calcium uptake mechanism or uniport and both sodium-dependent and sodium-independent efflux mechanisms. Whether sodium-independent calcium efflux is mediated and whether sodium-dependent calcium efflux can be found in liver mitochondria have been questioned. Kinetics results relevant to the answers of these questions are discussed below.

A slow, mediated, sodium-independent calcium efflux mechanism is identified which shows second order kinetics. This mechanism, which shows “nonessential activation” kinetics, has a Vmax around 1.2 nmol calcium per mg protein per min and a half maximal velocity around 8.4 nmol calcium per mg protein.

A slow, sodium-dependent calcium efflux mechanism is identified, which is first order in calcium and second order in sodium. This mechanism has a Vmax around 2.6 nmol of calcium per mg protein per min. The sodium dependence is half saturated at an external sodium concentration of 9.4 mM, and the calcium dependence is half saturated at an internal calcium concentration of 8.1 nmol calcium per mg protein. The cooperativity of the sodium dependence effectively permits a terreactant system to be fit by a bireactant model in which [Na] only appears as the square of [Na]. This liver system shows simultaneous, as opposed to ping-pong, kinetics. It is also found to be sensitive to inhibition by tetraphenylphosphonium, magnesium, and ruthenium red.

A model is proposed in which mitochondrial calcium transport could function to “shape the pulses” of cytosolic calcium. Simultaneously, mitochondria may mediate a “calcium memory” coupled perhaps to activation of cytosolic events through calmodulin or perhaps to activation of electron transport through the activation of specific dehydrogenases by intramitochondrial calcium.

Keywords

Cytosolic Calcium Mitochondrial Calcium Calcium Load Efflux Mechanism Calcium Efflux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sordahl, L.A., Arch. Biochem. Biophys. 167:104–115 (1975).PubMedCrossRefGoogle Scholar
  2. 2.
    Puskin, J.S., Gunter, T.E., Gunter, K.K., and Russell, P.R., Biochemistry 15:3834–3842 (1976).PubMedCrossRefGoogle Scholar
  3. 3.
    Crompton, M., Capano, M., and Carafoli, E., Eur. J. Biochem. 69:453–462 (1976).CrossRefGoogle Scholar
  4. 4.
    Bygrave, F.L., Reed, K.C., and Spencer, T., Nature, New Biology 230:89–91 (1971).Google Scholar
  5. 5.
    Bygrave, F.L., Biol. Rev. Cambridge Phils. Soc. 53:43–79 (1978).CrossRefGoogle Scholar
  6. 6.
    Nicholls, D.G., and Crompton, M., FEBS Lett. 111:261–268 (1980).PubMedCrossRefGoogle Scholar
  7. 7.
    Nicholls, D., and Akerman, K.E.O., Biochim. Biophys. Acta 683:57–88 (1982).PubMedCrossRefGoogle Scholar
  8. 8.
    Nicholls, D.G., Biochem. J. 176:463–474 (1978).PubMedGoogle Scholar
  9. 9.
    Carafoli, E., FEBS Lett. 104:1–5 (1979).PubMedCrossRefGoogle Scholar
  10. 10.
    Rosier, R.N., Tucker, D.A., Meerdink, S., Jain, I., and Gunter, T.E., Arch. Biochem. Biophys. 210:549–564 (1981).PubMedCrossRefGoogle Scholar
  11. 11.
    Becker, G.L., Biochim. Biophys. Acta 591:234–239 (1980).PubMedCrossRefGoogle Scholar
  12. 12.
    Nicchitta, C.V., and Williamson, J.R., J. Biol. Chem. 259:12978–12983 (1984).PubMedGoogle Scholar
  13. 13.
    Fiskum, G., Cell Calcium 6:26–38 (1985).CrossRefGoogle Scholar
  14. 14.
    Metcalf, J.C., Hesketh, T.R., and Smith, G.A., Cell Calcium 6:183–195 (1985).CrossRefGoogle Scholar
  15. 15.
    McNeil, P.L., and Taylor, D.L., Cell Calcium 6:83–93 (1985).PubMedCrossRefGoogle Scholar
  16. 16.
    Denton, R.M., and McCormack, J.G., Am. J. Physiol. 249:E543–E554 (1985).PubMedGoogle Scholar
  17. 17.
    Hansford, R.G., Rev. Physiol. Biochem. Pharmacol. 102:1–72 (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    Crcmpton, M., Kunzi, M., and Carafoli, E., Eur. J. Biochem. 79:549–559 (1977).CrossRefGoogle Scholar
  19. 19.
    Fiskum, G., and Lehninger, A.L., J. Biol. Chem. 254:6236–6239 (1979).PubMedGoogle Scholar
  20. 20.
    Haworth, R.A., Hunter, D.R., and Berkoff, H.A., FEBS Lett. 110:216–218 (1980).PubMedCrossRefGoogle Scholar
  21. 21.
    Nedergaard, J., and Cannon, B., Acta Chem. Scand. B34:149–151 (1980).CrossRefGoogle Scholar
  22. 22.
    Goldstone, T.P., and Crompton, M., Biochem. J. 204:369–371 (1982).PubMedGoogle Scholar
  23. 23.
    Akerman, K.E.O., Arch. Biochem. Biophys. 189:256–262 (1978).PubMedCrossRefGoogle Scholar
  24. 24.
    Fiskum, G., and Cockrell, R.S., FEBS Lett. 92:125–128 (1978).PubMedCrossRefGoogle Scholar
  25. 25.
    Cockrell, R.S., Arch. Biochem. Biophys. 243:70–79 (1985).PubMedCrossRefGoogle Scholar
  26. 26.
    Vercesi, A., and Lehninger, A.L., Biochem. Biophys. Res. Commun. 118:147–153 (1984).PubMedCrossRefGoogle Scholar
  27. 27.
    Gunter, T.E., Chace, J.H., Puskin, J.S., and Gunter, K.K., Biochemistry 22:6341–6351 (1983).PubMedCrossRefGoogle Scholar
  28. 28.
    Bernardi, P., and Azzone, G.F., Eur. J. Biochem. 102:555–562 (1979).PubMedCrossRefGoogle Scholar
  29. 29.
    Bernardi, P., Biochim. Biophys. Acta 766:277–282 (1984).PubMedCrossRefGoogle Scholar
  30. 30.
    Moyle, J., and Mitchell, P., FEBS Lett. 73:131–136 (1977).PubMedCrossRefGoogle Scholar
  31. 31.
    Mpyle, J., and Mitchell, P., FEBS Lett. 77:136–140 (1977).CrossRefGoogle Scholar
  32. 32.
    Moyle, J., adn Mitchell, P., FEBS Lett. 84:135–140 (1977).PubMedCrossRefGoogle Scholar
  33. 33.
    Moody, A.J., West, I.C., Mitchell, R., and Mitchell, P., Eur. J. Biochem. 157:243–249 (1986).PubMedCrossRefGoogle Scholar
  34. 34.
    Pfeiffer, D.R., Schmid, P.C., Beatrice, M.C., and Schmid, H.H.O., J. Biol. Chem. 254:11485–11494 (1979).PubMedGoogle Scholar
  35. 35.
    Nicholls, D.G., and Brand, M.D., Biochem. J. 188:113–118 (1980).PubMedGoogle Scholar
  36. 36.
    Jurkowitz, M.S., Geisbuhler, T., Jung, D.W., and Brierly, G.P., Arch. Biochem. Biophys. 223:120–128 (1983).PubMedCrossRefGoogle Scholar
  37. 37.
    Beatrice, M.C., Palmer, J.W., and Pfeiffer, D.R., J. Biol. Chem. 255:8663–8671 (1980).PubMedGoogle Scholar
  38. 38.
    Beatrice, M.C, Stiers, D.L., and Pfeiffer, D.R., J. Biol. Chem. 257:7161–7171 (1982).PubMedGoogle Scholar
  39. 39.
    Beatrice, M.C, Stiers, D.L., and Pfeiffer, D.R., J. Biol. Chem. 259:1279–1287 (1984).PubMedGoogle Scholar
  40. 40.
    Pfeiffer, D.R., Palmer, J.W., Beatrice, M.C, and Stiers, D.L., in: “The Biochemistry of Metabolic Processes,” D.F.L. Lenon, F.W. Stratman, and R.N. Zahlten, eds., Elsevier/North Holland, Inc., New York, pp. 67–80 (1983).Google Scholar
  41. 41.
    Broekemeier, K.M., Schmid, P.C., Schmid, H.H.O., and Pfeiffer, D.R., J. Biol. Chem. 260:105–113 (1985).PubMedGoogle Scholar
  42. 42.
    Wingrcve, D.E., and Gunter, T.E., J. Biol. Chem. (in press).Google Scholar
  43. 43.
    Wingrove, D.E., and Gunter, T.E., J. Biol. Chem. (in press).Google Scholar
  44. 44.
    Glynn, I.M., and Karlish, S.J.D., Ann. Rev. Physiol. 37:13–55 (1975).CrossRefGoogle Scholar
  45. 45.
    Coll, K.E., Joseph, S.K., Corkey, B.E., and Williamson, J.R., J. Biol. Chem. 257:8696–8704 (1982).PubMedGoogle Scholar
  46. 46.
    Crompton, M., Kessar, P., and Al-Nasser, I., Biochem. J. 216:332–342 (1983).Google Scholar
  47. 47.
    Scarpa, A., Brinly, F.J., Tiffert, T., and Dabyak, G.R., Ann. NY Acad. Sci. 307:86–112 (1978).CrossRefGoogle Scholar
  48. 48.
    Wingrove, D.E., Amatruda, J.M., and Gunter, T.E., J. Biol. Chem. 259:9390–9394 (1984).PubMedGoogle Scholar
  49. 49.
    Hayat, L.H., and Crompton, M., Biochem. J. 202:509–518 (1982).PubMedGoogle Scholar
  50. 50.
    Barbour, R.L., and Chan, S.H.P., J. Biol. Chem. 256:1940–1948 (1981).PubMedGoogle Scholar
  51. 51.
    Sordahl, L.A., La Belle, E.F., and Rex, K.A., Am. J. Physiol. 246:C172–C176 (1984).PubMedGoogle Scholar
  52. 52.
    Harris, E.J., and Heffron, J.F.A., Arch. Biochem. Biophys. 218:531–539 (1982).PubMedCrossRefGoogle Scholar
  53. 53.
    Jurkowitz, M.S., Altschuld, R.A., Brierley, G.P., and Cragoe, E.J., FEBS Lett. 162:262–265 (1983).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Thomas E. Gunter
    • 1
  • Douglas E. Wingrove
    • 1
  • Srabani Banerjee
    • 1
  • Karlene K. Gunter
    • 1
  1. 1.Department of BiophysicsUniversity of Rochester School of Medicine and DentistryRochesterUSA

Personalised recommendations