Advertisement

Heat Shock Induces Developmental Anomalies in Artemia

  • A. Hernandorena
Part of the NATO ASI Series book series (NSSA, volume 174)

Abstract

The morphogenesis of supernumerary appendages on otherwise apodous abdominal segments can be induced in Artemia by specific nutritional conditions imposed on young feeding larvae[1–6], This manipulation, qualified as startling[7], was difficult to integrate into the context of our knowledge on morphogenesis. Artemia larvae start feeding after having performed three molts at the expense of vitelline reserves. During early postembryonic development, that is after hatching and before feeding, they are not sensitive to nutritional conditions and were therefore submitted to abnormal thermal conditions. Heat shocks delivered to newly hatched nauplii have long term effects on subsequent development. Now, it becomes easier to conceive that nutritional conditions imposed on older feeding larval stages may have morphogenetic effects.

Keywords

Heat Shock Abdominal Segment Homeotic Gene Artemia Salina Morphological Anomaly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Hernandorena, Obtention de morphogèneses appendiculaires abortives et surnuméraires chez Artemia salina (L.) (Crustacé Branchiopode) par carences alimentaires de base pyrimidique et de nucléotide purique, C. R. Acad. Sc. Paris 271:1406 (1970).Google Scholar
  2. 2.
    A. Hernandorena, Besoin alimentaire en acide adénylique, croissance et morphogènése chez Artemia salina (L.) (Crustacé Branchiopode), Ann. Nutr. Alim. 28(2):65 (1974).Google Scholar
  3. 3.
    A. Hernandorena, Action antagoniste de nucléotides purique et pyrimidque alimentaire sur la morphogenese appendiculaire d’Artemia salina (L.) (Crustacé Branchiopode), C. R. Acad. Sciences, Paris 284:1337 (1977).Google Scholar
  4. 4.
    A. Hernandorena, Relationships between purine and pyrimidine dietary requirements and Artemia salina morphogenesis, Comp. Biochem. Physiol. 62B:7 (1979).Google Scholar
  5. 5.
    A. Hernandorena, Action de la methionine alimentaire sur la morphogénèse appendiculaire d’Artemia. Hypothèse sur l’évolution du phénotype de ce crustacé, Reprod. Nutr. Dévelop. 25:75 (1985a).CrossRefGoogle Scholar
  6. 6.
    A. Hernandorena, Purine-mediated phosphate influence on Artemia morphogenesis, Reprod. Nutr. Develop. 25:883 (1985b).CrossRefGoogle Scholar
  7. 7.
    J. H. Sang, “Genetics and Development”, Longman, London, New York (1984).Google Scholar
  8. 8.
    L. Provasoli and K. Shiraishi, Axenic cultivation of the brine shrimp Artemia salina, Biol. Bull. 117:347 (1959).CrossRefGoogle Scholar
  9. 9.
    L. Provasoli, K. Shiraishi and J. R. Lance, Nutritional idiosyncrasies of Artemia and Tigriopus in monoxenic culture, Ann. N.Y. Acad. Sci. 77:250 (1959).CrossRefGoogle Scholar
  10. 10.
    L. Provasoli and A. d’Agostino, Development of artificial media for Artemia salina, Biol. Bull. 136:434 (1969).CrossRefGoogle Scholar
  11. 11.
    R. D. Squire and D. S. Grosch, “Swimmerette” a new sex-linked recessive mutant in the brine shrimp Artemia salina L., Biol. Bull. 133:487 (1967).Google Scholar
  12. 12.
    D. Miller and A. G. McLennan, Changes in intracellular levels of Ap3A and Ap4A in cysts and larvae of Artemia do not correlate with changes in protein synthesis after heat shocks, Nucleic Acid. Res. 14:6031 (1986).PubMedCrossRefGoogle Scholar
  13. 13.
    E. B. Lewis, A gene complex Controlling segmentation in Drosophila, Nature 276:565 (1978).PubMedCrossRefGoogle Scholar
  14. 14.
    A. H. Maas, Uber die Ausl’öbarkeit von temperatur-modifi-cationen wärend der Embryonalent-wieklung von Drosophila melanogaster, Wilhelm’s Roux Arch. 143:315 (1948).Google Scholar
  15. 15.
    P. Santamaria, Heat shock induced phenocopies of dominant mutants of the bithorax complex in Drosophila melanogaster, Molec. Gen. Genet. 172:161 (1979).PubMedCrossRefGoogle Scholar
  16. 16.
    D. Hedgecock, M. L. Tracey and K. Nelson, Genetics, in: “The Biology of Crustacea”, Vol. 2, D. E. Blies ed., Academic Press, New York and London (1982).Google Scholar
  17. 17.
    J. Dutrieu, Observations biochimiques et physiologiques sur le développement d’Artemia salina L., Arch. Zool. Exp. Gen. 99:1 (1960).Google Scholar
  18. 18.
    R. Benesch, Zur ontogenie und morphologie von Artemia salina L., Zool. Jb. Anat. 86:307 (1969).Google Scholar
  19. 19.
    Y. H. Nakanishi, J. Iwasaki, T. Okigaki and H. Kato, Cytological studies of Artemia salina. I. Embryonic development without cell multiplication after the blastula stage in encysted dry eggs, Annot. Zool. Jap. 35:223 (1962).Google Scholar
  20. 20.
    C. S. Olson and J. S. Clegg, Cell division during development of Artemia salina, Wilhelm’s Roux Arch. 184:1 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • A. Hernandorena
    • 1
  1. 1.Laboratoire du Museum National d’Histoire NaturellePlateau de l’AtalayeBiarritz CedexFrance

Personalised recommendations