Advertisement

Segment Morphogenesis in Artemia Larvae

  • John A. Freeman
Part of the NATO ASI Series book series (NSSA, volume 174)

Abstract

Development in brine shrimp nauplii includes the sequential formation of segments in the growing thorax and abdomen beginning at the anterior end[1,3]. After nineteen instars the segments are complete. In each segment two ventro-lateral thoracopods, segmental and intersegmental muscles, segmental ganglia, and peripheral nerves are formed over a period of three to four molt cycles[2,4,5]. This type of development is typical of primitive crustaceans and may mimic the embryonic development of the higher crustaceans[6].

Keywords

Brine Shrimp Molt Cycle Tendon Cell Artemia Salina Cell Shape Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. B. Weisz, The space-time pattern of segment formation in Artemia salina, Biol. Bull. 91:119 (1946).PubMedCrossRefGoogle Scholar
  2. 2.
    P. B. Weisz, The histochemical pattern of metameric development in Artemia salina, J. Morph. 81:45 (1947).PubMedCrossRefGoogle Scholar
  3. 3.
    J. S. Clegg and F. P. Conte, A review of the cellular and developmental biology of Artemia, in: “The Brine Shrimp Artemia,” Vol. 2, G. Persoone, O. Sorgeloos, O. Roels and E. Jaspers, eds., Universa Press, Wetteren (1980).Google Scholar
  4. 4.
    D. T. Anderson, Larval development and segment formation in the branchiopod crustaceans Limnadia stanlejana (Conchostraca and Artemia salina, Aus. J. Zool. 15:47 (1967).CrossRefGoogle Scholar
  5. 5.
    R. Benesch, Zur ontogenie und morphologie von Artemia salina, Zool. Jahrb. Abt. fur Anat. Ontog. Tiere 86:307 (1969).Google Scholar
  6. 6.
    D. T. Anderson, “Embryology and Phylogeny in Annelids and Arthropods,” Pergammon Press, New York (1973).Google Scholar
  7. 7.
    C. A. Ettensohn, Gastrulation in the sea urchin embryo is accompanied by the rearrangement of invaginating epithelial cells, Develop. Biol. 112:383 (1985).PubMedCrossRefGoogle Scholar
  8. 8.
    J. Kolega, The cellular basis of epithelial morphogenesis, in: “Developmental Biology, A Comprehensive Synthesis,” Vol. 2, L. W. Browder, ed., Plenum Press, New York (1986).Google Scholar
  9. 9.
    J. A. Freeman, Epidermal cell proliferation during thoracic development in larvae of Artemia, J. Crust. Biol. 6:37 (1986).CrossRefGoogle Scholar
  10. 10.
    D. Fristrom, The mechanism of evagination of imaginal discs of Drosophila melanogaster. III. Evidence for cell rearrangement, Develop. Biol. 54:163 (1976).PubMedCrossRefGoogle Scholar
  11. 11.
    J. D. Hardin and L. Y. Cheng, The mechanism and mechanics of archenteron elongation during sea urchin gastrulation, Develop. Biol. 115:490 (1986).CrossRefGoogle Scholar
  12. 12.
    R. Dennell, Integument and Exoskeleton, in: “The Physiology of Crustacea,” Vol. 2. T. Waterman, ed., Academic Press, New York (1960).Google Scholar
  13. 13.
    J. A. Freeman, The integument of Artemia during early development, in: “Biochemistry and Cell Biology of Brine Shrimp,” T. MacRae, J. Bagshaw and A. Warner, eds., CRC Press, Boca Raton (1988).Google Scholar
  14. 14.
    C. A. Poodry, Imaginal discs: morphology and development, in: “The Genetics and Biology of Drosophila,” Vol. 2d, M. Ashburner and T. R. F. Wright, eds., Academic Press, New York (1980).Google Scholar
  15. 15.
    T. Gustafson and L. Wolpert, Cellular movement and contact in sea urchin morphogenesis, Biol. Rev. Camb. Philos. Soc. 42:442 (1967).PubMedCrossRefGoogle Scholar
  16. 16.
    J. B. Nardi and I. Reynolds, Bidirectional folding of an insect epithelial monolayer, Exp. Zool. 237:209 (1986).CrossRefGoogle Scholar
  17. 17.
    B. Burnside, Microtubules and microfilaments in amphibiam neurulation, Amer. Zool. 13:989 (1973).Google Scholar
  18. 18.
    S. R. Hilfer, Extracellular and intracellular correlates of organ initiation in the embryonic chick thyroid, Amer. Zool. 13:1023 (1973).Google Scholar
  19. 19.
    B. S. Spooner, Microfilaments, cell shape change, and morphogenesis of salivary epithelium, Amer. Zool. 13:1007 (1973).Google Scholar
  20. 20.
    G. M. Odell, G. Oster, P. Alberch and B. Burnside, The mechanical basis of morphogenesis. I. Epithelial folding and invagination, Develop. Biol. 85:446 (1981).PubMedCrossRefGoogle Scholar
  21. 21.
    G. C. Schoenwolf and M. V. Franks, Quantitative analysis of changes in cell shapes during bending of the avian neural plate, Develop. Biol. 105:257 (1984).PubMedCrossRefGoogle Scholar
  22. 22.
    J. M. Sanger, B. Mittal, M. Pochapin and J. W. Sanger, Observations of microfilament bundles in living cells microinjected with fluorescently labelled contractile proteins, J. Cell Sci. Suppl. 5:17 (1986).PubMedGoogle Scholar
  23. 23.
    C. E. Ettensohn, Mechanisms of epithelial invagination. Quart. Rev. Biol. 60:289 (1985).PubMedCrossRefGoogle Scholar
  24. 24.
    R. L. Pictet, W. R. Clark, R. H. Williams and W. J. Rutter, An ultrastructural analysis of the developing embryonic pancreas, Develop. Biol. 29:436 (1972).PubMedCrossRefGoogle Scholar
  25. 25.
    J. Zwaan and R. W. Hendrix, Changes in cell and organ shape during early development of the ocular lens, Amer. Zool. 13:1039 (1973).Google Scholar
  26. 26.
    D. P. Richman, R. M. Stewart, J. W. Hutchinson and V. S. Cavinoss, Mechanical model of brain convolution development, Science 189:18 (1975).CrossRefGoogle Scholar
  27. 27.
    M. S. Smuts, S. R. Hilfer and R. L. Searls, Patterns of cellular proliferation during thyroid organogenesis, J. Embryol. Exp. Morphol. 48:269 (1978).PubMedGoogle Scholar
  28. 28.
    G. V. Goldin and N. K. Wessels, Mammalian lung development: the possible role of cell proliferation in the formation of supernumerary tracheal buds and in branching morphogenesis, J. Exp. Zool. 208:337 (1979).PubMedCrossRefGoogle Scholar
  29. 29.
    S. R. Hilfer and R. L. Searls, Cytoskeletal dynamics in animal morphogenesis, in: “Developmental Biology. A Comprehensive Synthesis,” Vol. 2, L. W. Browder, ed., Plenum Press, New York (1986).Google Scholar
  30. 30.
    T. Hiratsuka and T. Kato, A fluorescent analog of coleemid, N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-colcemid, as a probe for the coleemid-binding sites of tubulin and microtubules, Biol. Chem. 262:6318 (1987).Google Scholar
  31. 31.
    L. B. Cheshire, The role of microfilaments, microtubules, and intermediate filaments in epithelial evagination in the brine shrimp Artemia, M. S. Thesis, University of South Alabama (1987).Google Scholar
  32. 32.
    M. M. Mareel and M. de Mets, Effect of microtubule inhibitors on invasion and on related activities of tumor cells, Int. Rev. Cytol. 90:125 (1984).PubMedCrossRefGoogle Scholar
  33. 33.
    J. A. Freeman and J. D. Costlow, The cyprid molt cycle and its hormonal control in the barnacle Baianus amphitrite. Crust. Biol. 3:173 (1983).CrossRefGoogle Scholar
  34. 34.
    D. M. Skinner, Molting and regeneration, in: “The Biology of Crustacea,” Vol. 9, D. B. Bliss and L. H. Mantel, eds., Academic Press, New York (1985).Google Scholar
  35. 35.
    H. Holtzer, H. Weintraub, R. Mayne and B. Mochan, The cell cycle, cell lineages, and cell differentiation, in: “Current Topics in Developmental Biology,” Vol. 7, A. Moscona and A. Monroy, eds., Academic Press, New York (1972).Google Scholar
  36. 36.
    T. M. Rizki and R. M. Rizki, Developmental modifications induced by DNA base analogs, Amer. Zool. 17:649 (1977).Google Scholar
  37. 37.
    W. E. Wright, BUdR, probability and cell variants: towards a molecular understanding of the decision to differentiate. BioEssays 3:245 (1985).PubMedCrossRefGoogle Scholar
  38. 38.
    S. Tanaka, H. Sugihara-Yamamoto and Y. Kato, Epigenesis in developing avian scales, I. Stage-specific alterations of the developmental program caused by 5-bromodeoxyuridine, Develop. Biol. 121:467 (1987).PubMedCrossRefGoogle Scholar
  39. 39.
    H. Meinhardt, Heirarchical inductions of cell states: a model for segmentation in Drosophila, J. Cell Sci. Suppl. 4:357 (1986).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • John A. Freeman
    • 1
  1. 1.Department of BiologyUniversity of South AlabamaMobileUSA

Personalised recommendations