Molecular and Cellular Aspects of Chitin Synthesis in Larval Artemia

  • Michael N. Horst
Part of the NATO ASI Series book series (NSSA, volume 174)


The cuticle of Artemia and other crustaceans contains chitin which is covalently attached to protein[1–3]. While the role of such proteins in structural support of the cuticle seems clear, the possible functions of the proteins in the biosynthesis of the cuticle are not obvious. Recent work in my laboratory has indicated that crustaceans synthesize a chitin oligosaccharide via a dolichol-linked intermediate[4]. Subsequent transfer of the oligosaccharides to either endogenous polypeptides or synthetic peptide acceptors[5] yields a chitoprotein which may serve as a substrate for chitin synthetase, the enzyme responsible for polymerization of macromolecular chitin[6]. However, the pathway of synthesis for this material within the crustacean epithelial cell is not clear; one notion is that the chitoprotein is synthesized in the rough endoplasmic reticulum (RER), moves to the Golgi apparatus (where chitin synthetase is presumably located) and serves as a primer molecule for chitin synthetase, yielding a chitin-protein complex. The mechanism whereby this product is exported to the outside of the apical membrane and incorporated into the growing cuticle is not known.


Golgi Apparatus Apical Membrane Colloidal Gold Electron Microscope Level Chitin Synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Rudall, The chitin/protein complexes of insect cuticles, Advances in Insect Physiol. 111:257 (1963).CrossRefGoogle Scholar
  2. 2.
    S. Hunt, “Protein Polysaccharide Complexes in Invertebrates,” Academic Press, New York (1970).Google Scholar
  3. 3.
    P. R. Austin, C. Brine, J. Castle and J. Zikakis, Chitin. New facets of research, Science 212:749 (1981).PubMedCrossRefGoogle Scholar
  4. 4.
    M. N. Horst, The biosynthesis of crustacean chitin. Isolation and characterization of polyprenol-linked intermediates from brine shrimp microsomes, Arch. Biochem. Biophys. 223:254 (1981).CrossRefGoogle Scholar
  5. 5.
    M. N. Horst, Glycosylation of exogenous peptide acceptors by larval brine shrimp microsomes, in: “UCLA Symposium on Synthetic Peptides: Approaches to Biological Problems,” Plenum Press, New York (in press).Google Scholar
  6. 6.
    M. N. Horst, The biosynthesis of crustacean chitin by a microsomal enzyme from larval brine shrimp, Biol. Chem. 256:1412 (1980).Google Scholar
  7. 7.
    S. Hirano, Y. Ohe and H. Ono, Selective N-acetylation of chitosan, Carbohydrate Res. 47:315 (1976).CrossRefGoogle Scholar
  8. 8.
    L. Berger and D. Reynolds, The chitinase system of a strain of Streptomyces griseus, Biochem. Biophys. Acta 29:522 (1958).PubMedCrossRefGoogle Scholar
  9. 9.
    J. Molano, I. Polacheck, A. Duran and E. Cabib, An endochitinase from wheat germ. Activity on nascent and preformed chitin, J. Biol. Chem. 254:4901 (1979).PubMedGoogle Scholar
  10. 10.
    S. Makhlouf, L. Davis, P. Deepika and B. Anderson, Immuno-chemical characterization of antisera reactivities to N-acetyl-D-glucosamine oligosaccharides with the B(1–4)-glycosidic linkage, Glycoconjugate J. 3:351 (1986).CrossRefGoogle Scholar
  11. 11.
    D. Livingston, Immunoaffinity chromatography of proteins, Methods in Enzymology 34:723 (1974).PubMedCrossRefGoogle Scholar
  12. 12.
    U. Laemmli, Cleavage of structural proteins during the assembly of the head of the bacteriophage T4, Nature 227:680 (1970).PubMedCrossRefGoogle Scholar
  13. 13.
    M. N. Horst and R. M. Roberts, Solubilization, electrofocusing and two-dimensional electrophoresis of plasma membrane Polypeptides from Chinese hamster ovary cells, in: “Electrofocus/78” Elsevier, New York (1979).Google Scholar
  14. 14.
    H. Towbin, T. Staehelin and J. Gordon, Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications, Proc. Natl. Acad. Sci. USA 76:4350 (1979).PubMedCrossRefGoogle Scholar
  15. 15.
    M. Moeremans, G. Daneeis and J. DeMey, Sensitive colloidal metal (gold or silver) staining of protein blots on nitrocellulose membrane, Anal. Biochem. 145:315 (1985).PubMedCrossRefGoogle Scholar
  16. 16.
    A. Johnstone and R. Thorpe, “Immunochemistry in Practice,” Blackwell, Boston (1982).Google Scholar
  17. 17.
    G. Newman, B. Jasani and E. Williams, A simple postembedding system for the rapid demonstration of tissue antigens under the electron microscope, Histochem. J. 15:543 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    E. Carlemalm, M. Garavito and W. Villiger, Resin development for electron microscopy and analysis of embedding at low temperature, J. Micros. 126:123 (1982).CrossRefGoogle Scholar
  19. 19.
    J. Polak and I. Varndell, “Immunolabeling for Electron Microscopy,” Elsevier, New York (1984).Google Scholar
  20. 20.
    J. Roth, The preparation of protein A-gold complexes with 3 and 15 nm gold particles and their use in labeling multiple antigens on ultrathin sections, Histochem. J. 14:791 (1982).PubMedCrossRefGoogle Scholar
  21. 21.
    J. DeMey, Colloidal gold as a marker and tracer in light and electron microscopy, EMSA Bulletin 14:54 (1984).Google Scholar
  22. 22.
    P. Lewis and D. Knight, Staining methods for sectioned material, in: “Practical Methods for Electron Microscopy,” A. Glauert, ed., Elsevier, New York (1982).Google Scholar
  23. 23.
    H. Hoch, Use of permanganate to increase electron opacity of fungal walls, Mycologia 59:1209 (1977).CrossRefGoogle Scholar
  24. 24.
    M. Williams, Autoradiography and immunocytochemistry in: “Practical Methods in Electron Microscopy,” A. Glauert, ed., Elsevier, New York (1977).Google Scholar
  25. 25.
    A. Stevens, High resolution autoradiography, Methods in Cell Biology 2:255 (1966).CrossRefGoogle Scholar
  26. 26.
    C. Bulawa, M. Slater, E. Cabib, J. AuYoung, A. Sburlati, L. Adair and P. W. Robbins, The S. cerevisciae structural gene for chitin synthetase is not required for chitin synthesis in vivo, Cell 46:213 (1986).PubMedCrossRefGoogle Scholar
  27. 27.
    A. Sburlati and E. Cabib, Chitin synthetase 2, a presumptive participant in septum formation in Saccharomyces cerevisciae, J. Biol. Chem. 261:15147 (1986).PubMedGoogle Scholar
  28. 28.
    R. Kornfeld and S. Kornfeld, Comparative aspects of glycoprotein structure, Ann. Rev. Biochem. 45:217 (1976).PubMedCrossRefGoogle Scholar
  29. 29.
    P. Ledger and M. Tanzer, Monensin: a perturbant of cellular physiology, Trends in Biochem. Sci. 9:313 (1984).CrossRefGoogle Scholar
  30. 30.
    A. Duran and E. Cabib, Solubilization and partial purification of yeast chitin synthetase, J. Biol. Chem. 253:4419 (1978).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Michael N. Horst
    • 1
  1. 1.Division of Basic Science/BiochemistryMercer University, School of MedicineMaconUSA

Personalised recommendations