The Structure of Artemia Hemoglobin and Hemoglobin Domains

  • L. Moens
  • K. Ver Donck
  • K. De Smet
  • M. L. Van Hauwaert
  • J. Van Beeumen
  • P. Allard
  • S. Wodak
  • C. N. A. Trotman
Part of the NATO ASI Series book series (NSSA, volume 174)


Unlike the hemoglobins of the vertebrates, which are almost invariably intracellular and tetrameric, the intra- and extracellular hemoglobins of the invertebgates show a wide variety in their molecular size (Mr 16,000 to ~ 1.7.106) and architecture [1–4]. Intracellular hemoglobins usually have low Mr’s whereas extracellular hemoglobins have high Mr’s which are advantageous in minimizing excretion and avoiding excessive osmotic pressure. A high Mr can be achieved either by aggregation of many low Mr chains into a functional hemoglobin, as in annelids, or by concatenation of the low Mr chains into polymerie globins, as in molluscs and arthropods [4]. Despite this heterogeneity, Svedberg & Hedenius [5] suggested that all these pigments are built up from myoglobin-like polypeptide chains of Mr 16,000 containing one heme group and able to bind oxygen reversibly. Polypeptide chains, or fragments of much longer chains having these characteristics (Mr 16,000; one heme), were defined by Vinogradov [4] as “hemebinding domains”. Based on the number of domains and subunits in the native molecule, the invertebrate extracellular hemoglobins can be classified into four groups
  1. a)

    Single-domain, single-subunit hemoglobins, consisting of a single polypeptide chain, containing one heme group and having a Mr ~ 16,000 (Chironomus)

  2. b)

    Single-domain, multi-subunit hemoglobins consisting of aggregates of monomeric subunits, some of which are connected by disulfide bonds (Annelida)

  3. c)

    Two-domain, multi-subunit hemoglobins consisting of aggregates of dimeric Polypeptide chains (Mr 30,000–40,000), each containing two heme-binding domains (Arthropoda)

  4. d)

    Multi-domain, multi-subunit hemoglobins, consisting of two or more polypeptide chains each comprising eight to twenty heme binding domains (Arthropoda).



Heme Group Limited Proteolysis Globin Chain Guanidinium Hydrochloride Sperm Whale Myoglobin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. C. H. Chung and M. D. Eilerton, The physico-chemical and functional properties of extracellular respiratory haemoglobins and chlorocruorins, Prog. Biophys. Mol. Biol. 35:53 (1979).PubMedCrossRefGoogle Scholar
  2. 2.
    E. J. Wood, The oxygen transport and storage of proteins of invertebrates, Essays Biochem. 16:1 (1980).PubMedGoogle Scholar
  3. 3.
    R. E. Dickerson and I. Geis, “Hemoglobin: Structure, Function, Evolution and Pathology,” Benjamin/Cummings, Menlo Park (1983).Google Scholar
  4. 4.
    S. Vinogradov, The structure of invertebrate extracellular hemoglobins (erythrocruorins and chlorocruorins), Comp. Biochem. Physiol. 82B: 1 (1985).Google Scholar
  5. 5.
    T. Svedberg and A. Hedenius, Sedimentation constants of the respiratory proteins, Biol. Bull. 66:191 (1934).CrossRefGoogle Scholar
  6. 6.
    L. Moens and M. Kondo, Evidence for a dimeric form of Artemia salina extracellular hemoglobins with high molecular weight subunits, Eur. J. Biochem. 82:65 (1978).Google Scholar
  7. 7.
    J. D’Hondt, L. Moens, J. Heip, A. D’Hondt and M. Kondo, Oxygen-binding characteristics of three extracellular haemoglobins of Artemia salina, Biochem. J. 171:705 (1978).PubMedGoogle Scholar
  8. 8.
    E. J. Wood, C. Barker, L. Moens, W. Jacob, J. Heip and M. Kondo, Biophysical characterization of Artemia salina extracellular haemoglobins, Biochem. J. 193:353 (1981).PubMedGoogle Scholar
  9. 9.
    L. Moens, D. Geelen, M. L. Van Hauwaert, G. Wolf, R. Blust, R. Witters and R. Lontie, The structure of Artemia sp. hemoglobin. Cleavage of the native molecule into functional units by limited subtilisin digestion, Biochem. J. 223:801 (1984).Google Scholar
  10. 10.
    L. Moens, M. L. Van Hauwaert and G. Wolf, The structure of Artemia sp. haemoglobins. III. Purification of a structural unit to homogeneity, Biochem. J. 227:917 (1985).PubMedGoogle Scholar
  11. 11.
    L. Moens, M. L. Van Hauwaert, D. Geelen, G. Verpooten and J. Van Beeumen, in: “Artemia Research an its Applications,” Vol. 2, W. Decleir, L. Moens, H. Siegers, E. Jaspers and P. Sorgeloos, eds., Universa Press, Wetteren (1987).Google Scholar
  12. 12.
    L. Moens, M. L. Van Hauwaert, K. De Smet, D. Geelen, G. Verpooten, J. Van Beeumen, S. Wodak, P. Allard and C. Trotman, A structural domain of the covalent polymer globin chains of Artemia, J. Biol. Chem. 263:4679 (1988).PubMedGoogle Scholar
  13. 13.
    K. De Smet, M. L. Van Hauwaert, L. Moens and J. Van Beeumen, The structure of Artemia sp. haemoglobins. II. A comparison of the structural units composing the Artemia sp. globin chains, in: “Artemia Research and its Applications”, Vol. 2, W. Decleir, L. Moens, H. Siegers, E. Jaspers and P. Sorgeloos, eds., Universa Press, Wetteren (1987).Google Scholar
  14. 14.
    R. M. Hewick, M. W. Hunkapiller, L. E. Hood and W. J. Dreyer, A gas-liquid solid phase peptide and protein sequenator, J. Biol. Chem. 256:7990 (1981).PubMedGoogle Scholar
  15. 15.
    M. W. Hunkapiller, R. Hewick, R. M. Dreyer and L. E. Hood, High sensitivity sequencing with a gas-phase sequenator, Methods Enzymol. 91:393 (1983).Google Scholar
  16. 16.
    A. M. Lesk and C. Chothia, How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins, J. Mol. Biol. 136:225 (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    D. Bashford, C. Chothia and A. M. Lesk, Determinants of a protein fold. Unique features of the globin amino acid sequences, J. Mol. Biol. 196:199 (1987).PubMedCrossRefGoogle Scholar
  18. 18.
    J. Kyte and R. F. Doolittle, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157:105 (1982).PubMedCrossRefGoogle Scholar
  19. 19.
    G. Fermi, Three-dimensional fourier synthesis of human deoxy haemoglobin at 2.5 Å resolution. Refinement of the atomic model, J. Mol. Biol. 97:237 (1976).CrossRefGoogle Scholar
  20. 20.
    R. Huber, O. Epp, W. Steigemann and H. Formanek, The atomic structure of erythrocruorin in the light of the chemical sequence and its comparison with myoglobin. J. Mol. Biol. 52:349 (1971).CrossRefGoogle Scholar
  21. 21.
    T. Takano, Structure of myoglobin refined at 2.0 Å resolution, J. Mol. Biol. 110:537 (1988).CrossRefGoogle Scholar
  22. 22.
    D. Eisenberg, Three-dimensional structure of membrane and surface proteins, Ann. Rev. Biochem. 53:595 (1984).PubMedCrossRefGoogle Scholar
  23. 23.
    P. Delhaise, M. Van Belle, M. Bardiaux, P. Allard, P. Hamers, E. Van Cutsem and S. Wodak, Analysis of data from Computer simulations on macromolecules using the CERAN package, J. Mol. Graphics 3:116 (1985).Google Scholar
  24. 24.
    A. T. Jones and S. Thirup, Using known substructures in protein model building and crystallography, EMBO J. 5:819 (1986).PubMedGoogle Scholar
  25. 25.
    M. Goodman, J. Pedwaydon, J. Czelusniak, T. Suzuki, T. Gotoh, L. Moens, F. Shishikura, D. Walz and S. Vinogradov, An evolutionary tree for invertebrate globin sequences, J. Mol. Evol. 27:236 (1988).PubMedCrossRefGoogle Scholar
  26. 26.
    C. N. A. Trotman, W. P. Tate, L. Moens and S. Wodak, Artemia haemoglobin compared with mammalian globins, Proc. Univ. Otago Med. Sch. 66:19 (1988).Google Scholar
  27. 27.
    P. A. Stockwell and G. B. Petersen, Homed: a homologous sequence editor, CABIOS 3:37 (1987).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • L. Moens
    • 1
  • K. Ver Donck
    • 1
  • K. De Smet
    • 1
  • M. L. Van Hauwaert
    • 1
  • J. Van Beeumen
    • 2
  • P. Allard
    • 3
  • S. Wodak
    • 3
  • C. N. A. Trotman
    • 4
  1. 1.Department of BiochemistryUniversitaire Instelling AntwerpenAntwerpen-WilrijkBelgium
  2. 2.Laboratory of MicrobiologyState University of GhentGentBelgium
  3. 3.Biological Macromolecular Conformation UnitFree University of Brussels (ULB) and Plant Genetic SystemsBrusselsBelgium
  4. 4.Department of BiochemistryUniversity of OtagoDunedinNew Zealand

Personalised recommendations