The Molecular Biology of Artemia Haemoglobins

  • Anthony M. Manning
  • Craig J. Marshall
  • Robert J. Powell
  • Clive N. Trotman
  • Warren P. Tate
Part of the NATO ASI Series book series (NSSA, volume 174)


Haemoglobin is a major protein induced during post-gastrula development of Artemia. Three haemoglobins are formed from the association of two different subunits, and they are expressed differentially during post-gastrula development. These haemoglobins are unusual in that they are of high molecular weight (Mr 260,000) and are composed of two globin chains (Mr 130,000) each of which is a polymer of eight covalently linked myoglobin-like domains [1]. Each polypeptide is encoded by a single large mRNA which may have originated as a result of successive tandem duplication and fusion of a single ancestral globin gene [2].


Globin Gene Preceding Domain Rabbit Reticulocyte Lysate Globin Chain Derive Amino Acid Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Moens, M-L. Van Hauwaert, K. De Smet, D. Geelen, G. Verpooten, J. Van Beeumen, S. Wodak, P. Alard and C. N. A. Trotman, A structural domain of the covalent polymer globin chains of Artemia, Interpretation of amino acid sequence data, J. Biol. Chem. 263:4679 (1988).PubMedGoogle Scholar
  2. 2.
    A. M. Manning, G. S. Ting, B. C. Mansfield, C. N. A. Trotman and W. P. Tate, The isolation and faithful translation of Artemia naupliar haemoglobin mRNA, Biochem. Int. 12:715 (1986).Google Scholar
  3. 3.
    C. J. Marshall, J. F. Cutfield, C. N. A. Trotman and W. P. Tate, Purification of the haemoglobins I and III from the brine shrimp, Artemia, Biochem. Int. 12:693 (1986).Google Scholar
  4. 4.
    T. Maniatis, E. F. Fritsch and J. Sambrook, Electrophoresis of RNA through Gels containing Formaldehyde, in “Molecular Cloning: A Laboratory Manual,” Cold Spring Harbor Laboratory, Cold Spring Harbor (1982).Google Scholar
  5. 5.
    D. J. Denhardt, D. Dressler and D. S. Ray, “The Single Stranded DNA Phages,” Cold Spring Harbor Laboratory, Cold Spring Harbor (1978).Google Scholar
  6. 6.
    N. Lonsberg and W. Gilbert, Primary structure of chicken muscle pyruvate kinase mRNA, Proc. Nat. Acad. Sci. (U.S.A) 80:3661 (1983).CrossRefGoogle Scholar
  7. 7.
    C. Lane and J. Knowland, The injection of mRNA into living cells: The use of frog oocytes for the assay of mRNA in the study of the control of gene expression, in: “The Biochemistry of Animal Development,” Vol. 3; R. Weber, ed., Academic Press, New York (1975).Google Scholar
  8. 8.
    U. Gubler, A simple one-tube reaction for the synthesis of doublestranded cDNA, Nucleic Acids Res. 16:2726 (1988).PubMedCrossRefGoogle Scholar
  9. 9.
    J. Messing, R. Crea and P. H. Seeburg, A system for shotgun DNA sequencing, Nucleic Acids Res. 9:309 (1981).PubMedCrossRefGoogle Scholar
  10. 10.
    T. V. Huynh, R. A. Young and R. W. Davis, Constructing and screening cDNA libraries in λgt10 and λgt11, in “DNA Cloning: A Practical Approach,” Vol. 1, D. Glover, ed., IRL Press, Oxford (1985).Google Scholar
  11. 11.
    F. Sanger, S. Nicklen and A. R. Coulson, DNA sequencing with chainterminating inhibitors, Proc. Nat. Acad. Sci. (U.S.A) 74:5463 (1977).CrossRefGoogle Scholar
  12. 12.
    R. Staden, A software system for DNA sequence manipulation by Computer, Nucleic Acids Res., 10:4731 (1982).PubMedCrossRefGoogle Scholar
  13. 13.
    D. J. Lipmann and W. R. Pearson, Rapid and sensitive protein similarity searches, Science 227:1435 (1985).CrossRefGoogle Scholar
  14. 14.
    D. Bashford, C. Chothia and A. M. Lesk, Determinants of a protein fold. Unique features of the globin amino acid sequences, J. Mol. Biol. 196:199 (1987).PubMedCrossRefGoogle Scholar
  15. 15.
    K. C. Reed and D. A. Mann, Rapid transfer of DNA from agarose gels to Nylon membranes, Nucleic Acids Res. 13:7207 (1985).PubMedCrossRefGoogle Scholar
  16. 16.
    A. P. Feinberg and B. Vogelstein, A technique for radiolabelling DNA restriction fragments to high specific activity, Anal. Biochem. 132:6 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    C. J. Marshall J. F. Cutfield, C. N. A. Trotman and W. P. Tate, An analysis of Artemia haemoglobins by comparison of immunoreactivities, Biochem. Int. 15:925 (1987).Google Scholar
  18. 18.
    A. A. Reyes and R. B. Wallace, in “Gentic Engineering: Principles and Methods,” Vol. 6., Plenum, New York (1984).Google Scholar
  19. 19.
    A. M. Manning, C. N. A. Trotman and W. P. Tate, Isolation of cDNA clones for the haemoglobins of the brine shrimp, Artemia, Proc. Univ. Otago. Med. Sch. 66:9 (1988).Google Scholar
  20. 20.
    K. De Smet, M-L. Van Hauwaert, L. Moens and J. Van Beeumen, The structure of Artemia sp. haemoglobins II. A comparison of the structural units composing the Artemia sp. globin chains, in “Artemia Research and its Applications,” Vol. 2, W. Decleir, L. Moens, H. Siegers, E. Jaspers and P. Sorgeloos, eds., Universa Press, Wetteren (1987).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Anthony M. Manning
    • 1
  • Craig J. Marshall
    • 1
  • Robert J. Powell
    • 1
  • Clive N. Trotman
    • 1
  • Warren P. Tate
    • 1
  1. 1.Department of BiochemistryUniversity of OtagoDunedinNew Zealand

Personalised recommendations