Tubulin Synthesis and Microtubule Organization in Artemia

  • Thomas H. MacRae
  • Elizabeth J. Campbell
  • Carrie M. Langdon
Part of the NATO ASI Series book series (NSSA, volume 174)


Many aspects of eukaryotic cell function and structural organization depend on the cytoskeleton, an interconnected array of filamentous elements including microtubules, microfilaments and intermediate filaments. The main structural protein of microtubules is tubulin, a heterodimer of α- and β- tubulin. The tubulins are in most cases the products of small gene families [1–3], giving rise to collections of isotubulins. The best characterized tubulin gene family occurs in the chicken where several, if not all, of the α- and β- genes have been cloned and sequenced. At least seven β-tubulin genes encoding six β-tubulin isotypes are present, and except for the β-tubulin gene expressed in erythrocytes, they are relatively highly conserved [2]. Most of the diversity within the chicken β-tubulins exists in a region near the carboxy terminus, with a smaller amount nearer the amino end of the protein. The β- isotypes, based on the variable region sequences and their tissue — specific expression, are divided into families. Each member of the family in the chicken shares an identical or almost identical sequence, even within the variable region, with a β-tubulin gene from human or other vertebrates. The genes of corresponding sequence are expressed in similar tissues from one species to another. The chicken α-tubulin gene family has at least five functional genes, and the five polypeptides they encode are more heterogeneous than those encoded by the β-tubulin genes [3]. The α-tubulins do not readily segregate into conserved classes within the vertebrates, although their major region of heterogeneity is at the carboxy terminus of the protein. In organisms other than the vertebrates, the number and arrangement of the tubulin genes is widely divergent but, like the vertebrate genes, they are subject to developmental regulation and yield isotubulin families of differing complexity [1].


Brine Shrimp Neural MAPs Carboxy Terminus Trypanosoma Brucei Tubulin Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. W. Cleveland and K. F. Sullivan, Molecular biology and genetics of tubulin, Ann. Rev. Biochem. 54:331 (1985)PubMedCrossRefGoogle Scholar
  2. 2.
    M. J. Monteiro and D. W. Cleveland, Sequence of chicken cβ 7 tubulin. Analysis of a complete set of vertebrate β-tubulin isotypes, J. Mol. Biol. 199:439 (1988).PubMedCrossRefGoogle Scholar
  3. 3.
    L. F. Pratt and D. W. Cleveland, A survey of the α-tubulin gene family in chicken: unexpected sequence heterogeneity in the Polypeptides encoded by five expressed genes, EMBO J. 7:931 (1988).PubMedGoogle Scholar
  4. 4.
    S. Khawaja, G. G. Gundersen and J. C. Bulinski, Enhanced stability of microtubules enriched in detyrosinated tubulin is not a direct function of detyrosination level, J. Cell Biol. 106:141 (1988).PubMedCrossRefGoogle Scholar
  5. 5.
    J. Wehland and K. Weber, Turnover of the carboxy-terminal tyrosine of α-tubulin and means of reaching elevated levels of detyrosination in living cells, J. Cell Sci. 88:185 (1987).PubMedGoogle Scholar
  6. 6.
    D. M. Beltramo, C. A. Arce and H. S. Barra, Tyrosination of microtubules and non-assembled tubulin in brain slices, Eur. J. Biochem. 162:137 (1987).PubMedCrossRefGoogle Scholar
  7. 7.
    L. F. Pratt, S. Okamura and D. W. Cleveland, A divergent testis-speeific α-tubulin isotype that does not contain a coded C-terminal tyrosine, Mol. Cell. Biol. 7:552 (1987).PubMedGoogle Scholar
  8. 8.
    T. Sherwin, A. Schneider, R. Sasse, T. Seebeck and K. Gull, Distinct localization and cell cycle dependence of C00H terminally tyrosinated α-tubulin in the microtubules of Trypanosoma brucei brucei, J. Cell Biol. 104:439 (1987).PubMedCrossRefGoogle Scholar
  9. 9.
    H. Maruta, K. Greer and J. L. Rosenbaum, The acetylation of α-tubulin and its relationship to the assembly and disassembly of microtubules, J. Cell Biol. 103:571 (1986).PubMedCrossRefGoogle Scholar
  10. 10.
    G. Piperno, M. LeDizet and X. Chang, Microtubules containing acetylated α-tubulin in mammalian cells in culture, J. Cell Biol. 104:289 (1987).PubMedCrossRefGoogle Scholar
  11. 11.
    W. S. Sale, J. C. Besharse and G. Piperno, Distribution of aceylated α-tubulin in retina and in in-vitro-assembled microtubules, Cell Motil. Cytoskel. 9:243 (1988).CrossRefGoogle Scholar
  12. 12.
    N. Wolf, C. L. Regan and M. T. Fuller, Temporal and spatial pattern of differences in microtubule behavior during Drosophila embryogenesis revealed by distribution of a tubulin isoform, Development 102:311 (1988).PubMedGoogle Scholar
  13. 13.
    J. C. Bulinski, J. E. Richards and G. Piperno, Posttranslational modifications of α-tubulin: detyrosination and acetylation differentiate populations of interphase microtubules in cultured cells, J. Cell Biol. 106:1213 (1988).PubMedCrossRefGoogle Scholar
  14. 14.
    A. Schneider, T. Sherwin, R. Sasse, D. G. Russell, K. Gull and T. Seebeck, Subpellicular and flagellar microtubules of Trypanosoma brucei brucei contain the same α-tubulin isoforms, J. Cell Biol. 104:431 (1987).PubMedCrossRefGoogle Scholar
  15. 15.
    F. Wandoseil, L. Serrano and J. Avila, Phosphorylation of α-tubulin carboxyl-terminal tyrosine prevents its incorporation into microtubules, J. Biol. Chem. 262:8268 (1987).Google Scholar
  16. 16.
    L. Serrano, J. Diaz-Nido, F. Wandosell and J. Avila, Tubulin phosphorylation by casein kinase II is similar to that found in vivo, J. Cell Biol. 105:1731 (1987).PubMedCrossRefGoogle Scholar
  17. 17.
    A. J. Hargreaves, F. Wandosell and J. Avila, Phosphorylation of tubulin enhances its interaction with membranes, Nature 323:827 (1986).PubMedCrossRefGoogle Scholar
  18. 18.
    F. Wandosell, L. Serrano, M. A. Hernandez and J. Avila, Phosphorylation of tubulin by a calmodulin-dependent protein kinase, J. Biol. Chem. 261:10332 (1986).PubMedGoogle Scholar
  19. 19.
    R. F. Luduena, H.-P. Zimmerman and M. Little, Identification of the phosphorylated β-tubulin isotype in differentiated neuroblastoma cells, FEBS Lett. 230:142 (1988).PubMedCrossRefGoogle Scholar
  20. 20.
    D. W. Cleveland, The multitubulin hypothesis revisited, in: “What have we learned?” J. Cell. Biol. 104:381 (1987).PubMedCrossRefGoogle Scholar
  21. 21.
    T. H. MacRae, Nonneural microtubule proteins: structure and function, Bio Essays 6:128 (1987).Google Scholar
  22. 22.
    H. C. Joshi, T. Y. Yen and D. W. Cleveland, In vivo co-assembly of a divergent β-tubulin subunit (cB6) into microtubules of different function, J. Cell Biol. 105:2179 (1987).PubMedCrossRefGoogle Scholar
  23. 23.
    M. A. Lopata and D. W. Cleveland, In vivo microtubules are copolymers of available β-tubulin isotypes: localization of each of six vertebrate β-tubulin isotypes using polyclonal antibodies elicited by synthetic peptide antigens, J. Cell Biol. 105:1707 (1987).PubMedCrossRefGoogle Scholar
  24. 24.
    J. A. Swan and F. Solomon, Reformation of the marginal band of avian erythrocytes in vitro using calf brain tubulin: peripheral determinants of microtubule form, J. Cell Biol. 99:2108 (1984).PubMedCrossRefGoogle Scholar
  25. 25.
    J. R. Bond, J. L. Fridovich-Keil, L. Pillus, R. C. Mulligan and F. Solomon, A chicken-yeast chimeric β-tubulin protein is incorporated into mouse microtubules in vivo, Cell 44:461 (1986).PubMedCrossRefGoogle Scholar
  26. 26.
    E. C. Raff, Genetics of microtubule systems, J. Cell Biol. 99:1 (1984).PubMedCrossRefGoogle Scholar
  27. 27.
    J. B. Olmsted, Microtubule-associated proteins, Ann. Rev. Biol. 2:421 (1986).CrossRefGoogle Scholar
  28. 28.
    D. G. Drubin, D. Caput and M. W. Kirschner, Studies on the expression of the microtubule-associated protein, tau, during mouse brain development, with newly isolated complimentary DNA probes, J. Cell Biol. 98:1090 (1984).PubMedCrossRefGoogle Scholar
  29. 29.
    L. I. Binder, A. Frankfurter and L. I. Rebhun, The distribution of tau in the mammalian central nervous system, J. Cell Biol. 101:1371 (1985).PubMedCrossRefGoogle Scholar
  30. 30.
    G. S. Bloom, T. A. Schoenfeld and R. B. Vallee, Widespread distribution of the major polypeptide component of MAP 1 (microtubule-associated protein 1) in the nervous system, J. Cell Biol. 98:320 (1984).PubMedCrossRefGoogle Scholar
  31. 31.
    F. Wandosell and J. Avila, Microtubule-associated proteins present in different developmental stages of Drosophila melanogaster, J. Cell Biochem. 35:83 (1987).PubMedCrossRefGoogle Scholar
  32. 32.
    N. Hirokawa, 270k microtubule-associated protein cross-reacting with anti-MAP 2 IgG in the crayfish peripheral nerve axon, J. Cell Biol. 103:33 (1986).PubMedCrossRefGoogle Scholar
  33. 33.
    S. Kim, M. Magendantz, W. Katz and F. Solomon, Development of a differentiated microtubule structure: formation of the chicken erythrocyte marginal band in vivo, J. Cell Biol. 104:51 (1987).PubMedCrossRefGoogle Scholar
  34. 34.
    J. M. Aletta and L. A. Greene, Sequential phosphorylation of chartin microtubule-associated proteins is regulated by the presence of microtubules, J. Cell Biol. 105:277 (1987)PubMedCrossRefGoogle Scholar
  35. 35.
    R. L. Margolis, C. T. Rauch and D. Job, Purification and assay of a 145-kDa protein (STOP 145) with microtubule-stabilizing and motility behavior, Proc. Natl. Acad. Sci. U.S.A. 83:639 (1986).PubMedCrossRefGoogle Scholar
  36. 36.
    G. Huber, G. Pehling and A. Matus, The novel microtubule-associated protein MAP 3 contributes to the in vitro assembly of brain microtubules, J. Biol. Chem. 261:2270 (1986).PubMedGoogle Scholar
  37. 37.
    L. M. Parysek, J. J. Wolosewick and J. B. Olmsted, MAP 4: a microtubuleassociated protein specific for a subset of tissue microtubules, J. Cell Biol. 99:2287 (1984).PubMedCrossRefGoogle Scholar
  38. 38.
    S. Kotani, H. Murofushi, S. Maekawa, H. Aizawa and H. Sakai, Isolation of rat liver microtubule-associated proteins with molecular mass of around 200,000 which distribute widely among mammalian cells, J. Biol. Chem. 263:5385 (1988).PubMedGoogle Scholar
  39. 39.
    G. T. Bramblett, S. Chang and M. Flavin, Periodic crosslinking of microtubules by cytoplasmic microtubule-associated and microtubulecorset proteins from a trypanosomatid, Proc. Natl. Acad. Sci. U.S.A. 84:3259 (1987).PubMedCrossRefGoogle Scholar
  40. 40.
    E. J. Aamodt and J. G. Culatti, Microtubules and microtubule-associated proteins from the nematode Caenorhabditis elegans: Periodic crosslinks connect microtubules in vitro, J. Cell Biol. 103:23 (1986).PubMedCrossRefGoogle Scholar
  41. 41.
    L. S. B. Goldstein, R. A. Laymon and J. R. McIntosh, A microtubuleassociated protein in Drosophila melanogaster: identification, characterization and isolation of coding sequences, J. Cell Biol. 102: 2076 (1986).PubMedCrossRefGoogle Scholar
  42. 42.
    B. W. Neighbors, R. C. Williams, Jr. and J. R. McIntosh, Localization of kinesin in cultured cells, J. Cell Biol. 106:1193 (1988).PubMedCrossRefGoogle Scholar
  43. 43.
    R. B. Vallee, J. S. Wall, B. M. Paschal and H. S. Shpetner, Microtubuleassociated protein IC from brain is a two-headed cytosolic dynein, Nature 332:561 (1988).PubMedCrossRefGoogle Scholar
  44. 44.
    T. Seebeck, V. Kung, T. Wyler and M. Muller, A 60-kDa cytoskeletal protein from Trypanosoma brucei brucei can inteact with membranes and with microtubules, Proc. Natl. Acad. Sci. U.S.A. 85:1101 (1988).PubMedCrossRefGoogle Scholar
  45. 45.
    A. Schneider, W. Eichenberger and T. Seebeck, A microtubule-binding protein of Trypanosoma brucei which contains covalently bound fatty acid, J. Biol. Chem. 263:6472 (1988).PubMedGoogle Scholar
  46. 46.
    J. M. Murray, Disassembly and reconstitution of a membrane-microtubule complex, J. Cell Biol. 98:1481 (1984).PubMedCrossRefGoogle Scholar
  47. 47.
    G. Mithieux, C. Audebet and B. Rousset, Association of purified thyroid lysosomes to reconstituted microtubules, Biochem. Biophys. Acta 969:121 (1988).PubMedCrossRefGoogle Scholar
  48. 48.
    M. M. Pratt, Stable complexes of axoplasmic vesicles and microtubules: protein composition and ATPase activity, J. Cell Biol. 103:957 (1986).PubMedCrossRefGoogle Scholar
  49. 49.
    V. J. Allan and T. E. Kreis, A microtubule-binding protein associated with membranes of the Golgi apparatus, J. Cell Biol. 103:2229 (1986).PubMedCrossRefGoogle Scholar
  50. 50.
    V. I. Rodionov, E. S. Nadezhdina, E. V. Leonova, E. A. Vaisberg, S. A. Kuznetsov and V. I. Gelfand, Identification of a 100kD protein associated with microtubules, intermediate filaments and coated vesicles in cultured cells, Exp. Cell Res. 159:377 (1985).PubMedCrossRefGoogle Scholar
  51. 51.
    R. B. Maccioni, L. Serrano and J. Avila, Structural and functional domains of tubulin, BioEssays 2:105 (1985).CrossRefGoogle Scholar
  52. 52.
    U. Z. Littauer, D. Giveon, M. Thierauf, I. Ginsberg and H. Ponstingl, Common and distinct tubulin binding sites for microtubule-associated proteins, Proc. Natl. Acad. Sci. U.S.A. 83:7162 (1986).PubMedCrossRefGoogle Scholar
  53. 53.
    V. Bennett, The membrane skeleton of human erythrocytes and its implications for more complex cells, Ann. Rev. Biochem. 54:273 (1985).PubMedCrossRefGoogle Scholar
  54. 54.
    R. E. Stephens, S. Oleszko-Szuts and M. J. Good, Evidence that tubulin forms an integral membrane skeleton in molluscan gill cilia, J. Cell Sci. 88:527 (1987).PubMedGoogle Scholar
  55. 55.
    J. M. Caron and R. D. Berlin, Dynamic interactions between microtubules and artificial membranes, Biochemistry 26:3681 (1987).PubMedCrossRefGoogle Scholar
  56. 56.
    J. M. Andreu and J. A. Munoz, Interaction of tubulin with oetyl glucoside and deoxycholate. 1. Binding and hydrodynamic studies, Biochemistry 25:5220 (1986).PubMedCrossRefGoogle Scholar
  57. 57.
    P. Burn, Amphitropic proteins: a new class of membrane proteins, Trend. Biochem. Sci. 13:79 (1988).PubMedCrossRefGoogle Scholar
  58. 58.
    P. Rafiee, C. O. Matthews, J. C. Bagshaw and T. H. MacRae, Reversible arrest of Artemia development by cadmium, Can. J. Zool. 64:1633 (1986).CrossRefGoogle Scholar
  59. 59.
    T. H. MacRae and R. F. Luduena, Developmental and comparative aspects of brine shrimp tubulin, Biochem. J. 219:137 (1984).PubMedGoogle Scholar
  60. 60.
    P. Rafiee, S. A. MacKinlay and T. H. MacRae, Taxol-induced assembly and characterization of microtubule proteins from developing brine shrimp (Artemia), Biochem. Cell Biol. 64:238 (1986).CrossRefGoogle Scholar
  61. 61.
    S. A. MacKinlay, R. F. Luduena and T. H. MacRae, Vinblastine-induced aggregation of brine shrimp (Artemia) tubulin, Biochem. Biophys. Acta 882:419 (1986).PubMedCrossRefGoogle Scholar
  62. 62.
    S. A. MacKinlay, R. F. Luduena and T. H. MacRae, Temperature effects on Solutions of vinblastine-induced polymers assembled from brine shrimp (Artemia) tubulin, FEBS Lett. 203:301 (1986).PubMedCrossRefGoogle Scholar
  63. 63.
    R. F. Luduena, A. Fellows, L. McManus, M. A. Jordan and J. Nunez, Contrasting roles of tau and microtubule-associated protein 2 in the vinblastine-induced aggregation of brain tubulin, J. Biol. Chem. 259:12890 (1984).PubMedGoogle Scholar
  64. 64.
    R. B. Vallee, A taxol-dependent procedure for the isolation of microtubules and microtubule-associated proteins (MAPs), J. Cell Biol. 92:435 (1982).PubMedCrossRefGoogle Scholar
  65. 65.
    H. W. Detrich, III, V. Prasad and R. F. Luduena, Cold-stable microtubules from Antarctic fishes contain unique α-tubulin, J. Biol. Chem. 262:8360 (1987).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Thomas H. MacRae
    • 1
  • Elizabeth J. Campbell
    • 1
  • Carrie M. Langdon
    • 1
  1. 1.Department of BiologyDalhousie UniversityHalifaxCanada

Personalised recommendations