Differential Gene Expression of Na, K-ATPase α- and β-Subunits in the Developing Brine Shrimp, Artemia

  • Jian Zhong Guo
  • Lowell E. Hokin
Part of the NATO ASI Series book series (NSSA, volume 174)


Na, K-ATPase plays an important role in maintaining Na+ and K+ electrochemical gradients across the plasma membrane [1]. It effects the coupled transports of three Na+ ions out of the cell and two K+ ions into the cell driven by the hydrolysis of one ATP. The ion gradients are essential for osmotic homeostasis and certain physiological processes such as the wave of excitation in nerve and muscle, ion transport in structures such as the kidney and intestine, and ion secretion in glands such as the avian salt gland and salivary glands. The enzyme has been purified from several tissues [2–4]. Numerous studies have shown that the enzyme molecule consists of two subunits: a catalytic α-subunit and a glycosylated β-subunit [2,3,5–7].


Brine Shrimp Northern Hybridization Ribonuclease Protection Assay Adenosine Triphosphatase Subunit mRNA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. C. Rossier, K. Greering and J. P. Kraehenbuhl, Regulation of the sodium pump: How and why? Trends Biochem. Sci. 12:483 (1987).CrossRefGoogle Scholar
  2. 2.
    J. Kyte, Properties of the two polypeptides of sodium-and potassiumdependent adenosine triphosphatase, J. Biol. Chem. 247:7642 (1972).PubMedGoogle Scholar
  3. 3.
    L. E. Hokin, J. L. Dahl, J. D. Deupree, J. F. Dixon, J. F. Hackney and J. F. Perdue, Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. X. Purification of the enzyme from the rectal gland of Squalus acanthias, J. Biol. Chem. 248:2593 (1973).PubMedGoogle Scholar
  4. 4.
    P. L. Jorgenson, Purification and characterization of Na, K-ATPase. III. Purification from the outer medulla of a mammalian kidney after selective removal of membrane components by sodium dodecylsulphate, Biochim. Biophys. Acta 356:36 (1974).CrossRefGoogle Scholar
  5. 5.
    J. R. Perrone, J. F. Hackney, J. F. Dixon and L. E. Hokin, Molecular properties of purified (sodium + potassium)-activated adenosine triphosphatases and their subunits from the rectal gland of Squalus acanthias and the electric organ of Electrophorus electricus, J. Biol. Chem. 250:4178 (1975).PubMedGoogle Scholar
  6. 6.
    I. M. Glynn, in: “The Enzymes of Biological Membranes”, Vol. 3, A. Martonosi, ed., Plenum Publishing, New York (1985).Google Scholar
  7. 7.
    G. L. Peterson and L. E. Hokin, Molecular weight and stochiometry of the sodium-and potassium-activated adenosine triphosphatase subunit, J. Biol. Chem. 256:3751 (1981).PubMedGoogle Scholar
  8. 8.
    K. Kawakami, S. Noguchi, M. Noda, H. Takahashi, T. Ohta, M. Kawamura, H. Nojima, K. Nagano, T. Hirose, S. Inayama, H. Hayashida, T. Miyata and S. Numa, Primary structure of the α-subunit of Torpedo californica Na, K-ATPase deduced from cDNA sequence, Nature 316:733 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    G. E. Shull, A. Schwartz and J. B. Lingrel, Amino-acid sequence of the catalytic subunit of the Na, K-ATPase deduced from a complementary DNA, Nature 316:691 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    L. A. Baxter-Lowe, J. Z. Guo, E. Bergstrom and L. E. Hokin, Molecular cloning and cDNA-derived amino acid sequence of the Na, K-ATPase in developing brine shrimp, Submitted (1988).Google Scholar
  11. 11.
    G. J. Peterson, L. Churchill, J. A. Fisher and L. E. Hokin, Structure and biosynthesis of Na, K-ATPase in developing brine shrimp nauplii, Ann. N.Y. Acad. Sci. 402:185 (1982).PubMedCrossRefGoogle Scholar
  12. 12.
    J. A. Fisher, L. A. Baxter-Lowe and L. E. Hokin, Regulation of Na, K-ATPase biosynthesis in developing Artemia salina, J. Biol. Chem. 261:515 (1986).PubMedGoogle Scholar
  13. 13.
    G. E. Shull, J. Greeb and J. B. Lingrel, Molecular cloning of three distinct forjns of the Na, K-ATPase α-subunit from rat brain, Biochemistry 25:8125 (1986).PubMedCrossRefGoogle Scholar
  14. 14.
    M. Gilman, in: “Current Protocols in Molecular Biology,” F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, L. G. Scidman, J. A. Smith and K. Struhl, eds., John Wiley and Son, New York (1987).Google Scholar
  15. 15.
    T. A. Kost, N. Theodorakis and S. H. Hughs, The nucleotide sequence of the chick cytoplasmic β-actin gene, Nucleic Acids Res. 11:8287 (1983).PubMedCrossRefGoogle Scholar
  16. 16.
    G. L. Peterson, A simplification of the protein assay method of Lowry et al. which is more generally applicable, Anal. Biochem. 83:346 (1977).PubMedCrossRefGoogle Scholar
  17. 17.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193:265 (1951).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Jian Zhong Guo
    • 1
  • Lowell E. Hokin
    • 2
  1. 1.Department of Physiology, Faculty of MedicineUniversity of ManitobaWinnipegUSA
  2. 2.Department of PharmacologyUniversity of Wisconsin Medical SchoolMadisonUSA

Personalised recommendations