Molecular Biology of Larval Osmoregulation

  • Frank P. Conte
Part of the NATO ASI Series book series (NSSA, volume 174)


Halophilic organisms have evolved several diverse strategies in solving problems of osmotic stress. For example, animal and plant halophiles find life can be sustained in large measure by controlling the intracellular osmotic pressure with small molecules. These organisms are referred to as osmoconformers. Somero and colleagues have cogently argued that halophilic osmoconformers utilize a family of organic solutes, termed osmolytes, to passively regulate the intracellular osmotic pressures[1]. This osmotic system is believed to be a more flexible and adaptive mechanism with simpler genetic controls than those proposed for the more “primitive” osmoregulators that are dependent upon genetic control of the mechanics of cell volume[2]. Similarly, halophilic microbes employ small ions as a simple osmolytes to passively control water fluxes across the bacterial cell wall. These bacteria utilize membrane mechanisms that pump into the cell high concentrations of K+ ions. Again, it can be argued that the control of the osmotic system requires a simpler genetic mechanism and, together with the genetic selection for cytosolic proteins having a higher proportion of acidic amino acids, provides for vital subcellular organelles (ribosomes) and enzyme complexes to be functional at salt concentrations in excess of 1 molar. It is obvious that genetic evolution through natural selection has taken a long period of time for this osmotic system to ascertain which of the many changes in DNA sequences needed to code for these proteins was best in coping with widely fluctuating environmental salinites.


MDCK Cell Brine Shrimp Salt Gland Sodium Pump Artemia Salina 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. H. Yancey, M. E. Clark, S. C. Hand, R. D. Bowlus and G. M. Somero, Living with water stress: Evolution of osmolyte Systems, Science 217:1214 (1982).PubMedCrossRefGoogle Scholar
  2. 2.
    R. Gilles, “Mechanisms of Osmoregulation in Animals: Maintenance of Cell Volume,” J. Wiley & Sons, New York (1979).Google Scholar
  3. 3.
    F. P. Conte, Structure and Function of the Crustacean Larval Salt Gland. in: “Inter. Rev. of Cytol,” Danielli, J. ed., Academic Press, New York (1984).Google Scholar
  4. 4.
    R. J. Barnett, J. E. Mazurkiewicz and J. S. Addis, Avian salt gland: A model for the study of membrane biosis. in: “Methods in Enzymology,” S. Fleischer and B. Fleischer, eds., Academic Press, New York (1983).Google Scholar
  5. 5.
    L. Churchill, G. L. Peterson and L. E. Hokin, The large subunit of (sodium+potassium-activated) adenosine triphosphatase from the electroplax of Electrophorus electricus in a glycoprotein, Biochem. Biophys. Res. Commun. 90:488 (1979).PubMedCrossRefGoogle Scholar
  6. 6.
    A. McDonough and D. K. Mircheft, Synthesis and degradation of Na, ICATPase alpha subunit in MDCK Cells, Fed. Proc. Abst. 42:1934 (1983).Google Scholar
  7. 7.
    B. C. Rossier, K. Geering and J. P. Kraeheubuhl, Regulation of the sodium pump: how and why? Trends in Biochem. Sci. 12:483 (1987).CrossRefGoogle Scholar
  8. 8.
    J. Kyte, Molecular considerations relevant to the mechanism of active transport, Nature 292:201 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    M. Morohashi and M. Kawamura, Solubilization and purification of Artemia salina Na, K-activated ATPase and NH2-terminal amino acid sequence of its larger subunit, J. Biol. Chem. 259:14928 (1984).PubMedGoogle Scholar
  10. 10.
    A. Hiatt, A. A. McDonough and I. S. Edelman, Assembly of the (Na+K)-adenosine triphosphatase. Post-translational membrane integration of the α-subunit, J. Biol. Chem. 259:2629 (1984).PubMedGoogle Scholar
  11. 11.
    G. L. Peterson, L. Churchill, J. A. Fisher and L. E. Hokin, Structural and biosynthetic studies on the two molecular forms of the (Na + K+)-activated adenosine triphosphatase in Artemia salina nauplii, J. Exp. Zool. 221:295 (1982a).CrossRefGoogle Scholar
  12. 12.
    G. L. Peterson, L. Churchill, J. A. Fisher and L. E. Hokin, Structure and biosynthesis of (Na, K)-ATPase in developing brine shrimp nauplii, in “Ann. N.Y.. Acad. Sci: Transport ATPases,” Vol. 402, E. Carafoili and A. Scarpa, eds., (1982b).Google Scholar
  13. 13.
    J. Fisher, L. Baxter-Lowe and L. Hokin, Site of synthesis of α and β-subunits of the Na, K-ATPase in brine shrimp nauplii, J. Biol. Chem. 259:14217 (1984).PubMedGoogle Scholar
  14. 14.
    J. Salon and I. S. Edelman, Developmental regulation of two catalytic forms of Na, K-ATPase in the brine shrimp, Fed. Proc. 45:A2884 (1986).Google Scholar
  15. 15.
    G. L. Peterson, R. D. Ewing, S. R. Hootman and F. P. Conte, Large scale partial purification and molecular and kinetic properties of the (Na+K)-activated adenosine triphosphatase from Artemia salina nauplii, J. Biol. Chem. 253:4762 (1978).PubMedGoogle Scholar
  16. 16.
    K. J. Sweadner, Two molecular forms of (Na+K+)-stimulated ATPase in brain, J. Biol. Chem. 254:6060 (1979).PubMedGoogle Scholar
  17. 17.
    T. Matsuda, H. Iwata and J. R. Cooper, Specific inactivation of alpha (+) molecular form of Na, K-ATPase by pyrithiamin, J. Biol. Chem. 259:3858 (1984).PubMedGoogle Scholar
  18. 18.
    G. D. Schellenberg, I. V. Pech and W. L. Stahl, Immunoreactivity of subunits of the Na, K-ATPase. Cross reactivity of the α, α+ and β forms in different organs and species, Biochim. Biophys. Acta 649:691 (1981).PubMedCrossRefGoogle Scholar
  19. 19.
    A. McDonough and C. Schmitt, Comparison of subunits of cardia, brain, and kidney Na, K-ATPase, Am. J. Physiol. 248:C247 (1985).PubMedGoogle Scholar
  20. 20.
    J. Lytton, J. C. Lin and G. Guidotti, Identification of two molecular forms of Na, K-ATPase in rat adipocytes, J. Biol. Chem. 260:1177 (1985).PubMedGoogle Scholar
  21. 21.
    P. L. Jorgensen, Purification and characterization of (Na+ + K+)-ATPase. Estimation of the purity and of the molecular weight and Polypeptide content per enzyme unit in preparations from the outer medulla of rabbit kidney, Biochim. Biophys. Acta 356:53 (1974).PubMedCrossRefGoogle Scholar
  22. 22.
    G. J. Siegel, T. Desmond and S. A. Ernst, Immunoreactivity and Quabaindependent phosphorylation of Na, K-ATPase catalytic subunit doublets, J. Biol. Chem. 261:13768 (1986).PubMedGoogle Scholar
  23. 23.
    R. M. Young and J. B. Lingrel, Tissue distribution of mRNAs encoding the alpha isoforms and beta subunit of rat Na, K-ATPase, Biochem. Biophys. Res. Comm. 145:52 (1987).PubMedCrossRefGoogle Scholar
  24. 24.
    O. Urayama and K. J. Sweadner, Three isoform proteins of the catalytic subunit of rat brain Na, K-ATPase. Fed. Proc. 2:A5846 (1988).Google Scholar
  25. 25.
    R. J. Lowy and F. P. Conte, Isolation and functional characteristics of the larval brine shrimp salt gland (Artemia salina), Am. J. Physiol. 248:R702 (1984a).Google Scholar
  26. 26.
    R. J. Lowy and F. P. Conte, Morphology of isolated crustacean larval salt gland, Am. J. Physiol. 248:R709 (1984b).Google Scholar
  27. 27.
    J. Clegg and F. P. Conte, A review of the cellular and developmental biology of Artemia, in “The Brine Shrimp, Artemia,” Vol. II, G. Persoone, P. Sorgeloos, O. Roels and E. Jaspers, eds., Universa Press, Wetteren (1980).Google Scholar
  28. 28.
    J. W. Bowen and A. McDonough, Pretranslational regulation of Na, K-ATPase in cultured canine kidney cells by low K+, Amer. J. Physiol. 252:C179 (1987).PubMedGoogle Scholar
  29. 29.
    L. R. Pollack, E. H. Tate and J. S. Cook, Na, K-ATPase in HeLa cells after prolonged growth in low K+ or ouabain, J. Cell Physiol, 106:85 (1981).PubMedCrossRefGoogle Scholar
  30. 30.
    J. P. T. Ward and I. R. Cameron, Adaptation of the cardiac muscle sodium pump to chronic potassium deficiency, Cardiovasc. Res. 18:257 (1984).PubMedCrossRefGoogle Scholar
  31. 31.
    L. J. Boardman, J. M. Huett, J. F. Lamb and J. Polson, Effect of growth in lithium on ouabain binding, Na, K-ATPase and Na and K transport in HeLa cells, J. Physiol. Lond. 244:677 (1975).PubMedGoogle Scholar
  32. 32.
    B. A. Wolitzky and D. M. Fambrough, Regulation of the Na, K-ATPase in cultured chick skeletal muscle, J. Biol. Chem. 261:9990 (1986).PubMedGoogle Scholar
  33. 33.
    A. McDonough, J. W. Bowen, M. R. Quintero and D. S. Putnam, Ionic Stimuli directly increase Na, K-ATPase α-subunit transcription, Fed. Proc. 2:A5854 (1988).Google Scholar
  34. 34.
    L. Lescale-Matys and A. McDonough, Serum repletion increases Na, K-ATPase synthesis pretranslationally in MDCK cells via sodium influx, Fed. Proc. 2:A5355 (1988).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Frank P. Conte
    • 1
  1. 1.Department of ZoologyOregon State UniversityCorvallisUSA

Personalised recommendations