Identification of a Protein which Specifically Binds a Highly Repetitive Heterochromatic DNA Family (Alu 1 Family) of Artemia Franciscana

  • Roberta Benfante
  • Claudio Barigozzi
  • Stefano Tenca
  • Gianfranco Badaracco
Part of the NATO ASI Series book series (NSSA, volume 174)


Heterochromatin, the most highly condensed region of interphase chromosomes and generally located in centromeric and telomeric regions, contains nucleotide sequences of length from about 10 to more than 103 base pairs repeated thousands to millions of times per haploid genome and arranged in long tandem arrays (satellite DNA) [1–5]. Even if the sequences of the heterochromatic DNA are assumed to be the primary cause of differential condensation, other chromosomal constituents, such as proteins and RNA, must mediate this folding [6,7]. Therefore, the understanding of the molecular mechanisms involved in heterochromatin condensation requires knowledge of heterochromatic DNA sequence organization as well as identification of proteins with the potential role to maintain higher order heterochromatin structure.


Interphase Nucleus Nitrocellulose Filter Specific Binding Activity Immune Rabbit Serum Phosphocellulose Column 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. J. Peacock, A. R. Lohe, W. L. Gerlach, P. Dunsmuir, E. S. Dennis and R. Appels, “Fine structure and evolution of DNA in Heterochromatin,” Cold Spring Harbor Symp. Quant. Biol. 42:1121 (1977).CrossRefGoogle Scholar
  2. 2.
    B. John and G. L. C. Miklas, Functional aspects of satellite DNA and heterochromatin, Int. Rev. Cytol. 58:1 (1979).PubMedCrossRefGoogle Scholar
  3. 3.
    D. L. Brutlag, Molecular arrangement and evolution of heterochromatic DNA, Ann. Rev. Genet. 14:121 (1980).PubMedCrossRefGoogle Scholar
  4. 4.
    M. F. Singer, Highly repeated sequences in mammalian genomes, Int. Rev. Cytol. 76:67 (1982).PubMedCrossRefGoogle Scholar
  5. 5.
    M. Gatty, D. A. Smith and B. S. Baker, A gene controlling condensation of heterochromatin in Drosophila melanagaster, Science 221:83 (1983).CrossRefGoogle Scholar
  6. 6.
    T. Hsieh and D. L. Brutlag, A protein that preferentially binds Drosophila satellite DNA, Proc. Natl. Acad. Sci. U.S.A. 76:726 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    C. R. Rodriguez-Alfageme, G. T. Rudkin and L. H. Cohen, Isolation, properties and cellular distribution of Dl, a chromosomal protein of Drosophila, Chromosoma (Berl.) 78:1 (1980).CrossRefGoogle Scholar
  8. 8.
    C. R. Rodriguez-Alfageme, G. T. Rudkin and L. H. Cohen, Locations of chromosomal proteins in polytene chromosomes, Proc. Natl. Acad. Sci. U.S.A. 73:2038 (1976)CrossRefGoogle Scholar
  9. 9.
    L. Levinger and A. Varshavsky, Protein Dl preferentially binds A + T-rich DNA in vitro and is a component of Drosophila melanogaster nucleosomes containing A + T-rich satellite DNA, Proc. Natl. Acad. Sci. U.S.A. 79:7152 (1982).PubMedCrossRefGoogle Scholar
  10. 10.
    F. C. Bennet, B. I. Rosenfeld, C. K. Huang and L. C. Yeoman, Evidence for two conformational forms of nonhistone protein BA which differ in their affinity for DNA, Biochem. Biophys. Res. Commun. 104:649 (1982).CrossRefGoogle Scholar
  11. 11.
    F. Strauss and A. Varshavsky, A protein binds to a satellite DNA repeat at three specific sites that would be brought into mutual proximity by DNA folding in the nucleosome, Cell 37:889 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    M. J. Solomon, F. Strauss and A. Varshavsky, A mammalian high mobility group protein recognizes any Stretch of six A-T base pairs in duplex DNA, Proc. Natl. Acad. Sci. U.S.A. 83:1276 (1986).PubMedCrossRefGoogle Scholar
  13. 13.
    C. Barigozzi, G. Badaracco, P. Plevani, L. Baratelli, S. Profeta, E. Ginelli and R. Meneveri, Heterochromatin in the genus Artemia, Chromosoma (Berl.) 90:332 (1984).CrossRefGoogle Scholar
  14. 14.
    G. Badaracco, L. Baratelli, E. Ginelli, R. Meneveri, P. Plevani, P. Valsasnini and C. Barigozzi, Variations in repetitive DNA and heterochromatin in the genes Artemia, Chromosoma (Berl.) 95:71 (1987).CrossRefGoogle Scholar
  15. 15.
    M. M. Garner and A. Revzin, A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: Application to components of the Escherichia coli lactose operon regulatory system, Nucl. Acids Res. 9:3047 (1981).PubMedCrossRefGoogle Scholar
  16. 16.
    R. Maniatis, E. F. Fritsch and J. Sambrook, “Molecular Cloning: A Laboratory Manual,” Cold Spring Harbor Press, Cold Spring Harbor (1982).Google Scholar
  17. 17.
    U. K. Laemmli and M. Favre, Maturation of the head of bacteriophage T4. 1. DNA packaging events, J. Mol. Biol. 80:575 (1973).PubMedCrossRefGoogle Scholar
  18. 18.
    P. Plevani, G. Badaracco, C. Angl and L. M. S. Chang, DNA Polymerase I and DNA primase complex in yeast, J. Biol. Chem. 259:7532 (1984).PubMedGoogle Scholar
  19. 19.
    J. L. Vaitukatis, Production of antisera with small doses of immunogen: multiple intradermal injection, Methods in Enzymology 73:46 (1981).CrossRefGoogle Scholar
  20. 20.
    S. N. Hsu, L. Daine and H. Fanger, Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures, Jour. Histochem. Cytochem. 29:577 (1981).CrossRefGoogle Scholar
  21. 21.
    R. S. Jack, M. T. Brown and W. J. Gehsuing, Protein blotting as a means to detect sequence-specific DNA-binding proteins, Cold Spring Harbor Symp. Quant. Biol. XLVII:483 (1982).Google Scholar
  22. 22.
    J. Cruces, M. L. G. Wonenburger, M. Diaz-Guerra, J. Sebastian and J. Renart, Satellite DNA in the crustacean Artemia, Gene 44:341 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Roberta Benfante
    • 1
  • Claudio Barigozzi
    • 1
  • Stefano Tenca
    • 1
  • Gianfranco Badaracco
    • 1
  1. 1.Dipartimento di Genetica e di Biologia dei MicrorganismiUniversita di MilanoMilanoItaly

Personalised recommendations