Advertisement

cDNA Cloning of Developmentally Regulated Artemia Genes

  • Leandro Sastre
  • Ignacio Palmero
  • Maria-Teresa Macias
  • Ines Gil
  • Enrique Franco
  • Elvira Dominguez
  • Margarita Diaz-Guerra
  • Miguel Quintanilla
  • Jesus Cruces
  • Jaime Renart
Part of the NATO ASI Series book series (NSSA, volume 174)

Abstract

Artemia cryptobiotic embryos are characterized by their total absence of metabolic activity, including DNA, RNA and protein synthesis. Many efforts have been devoted to the study of the mechanisms that regulate the interruption of these processes in the cyst and their activation following cyst rehydration. In the case of protein synthesis, all the necessary components are present in the cyst (mRNA, ribosomes, initiation and elongation factors, etc,) and reactivation of translation seems to depend on some modifications, such as protein phosphorylation or mRNP disruption that make these components available for protein synthesis (reviewed by Wahba and Woodley [1]).

Keywords

cDNA Clone Codon Usage Deduce Amino Acid Sequence Codon Position Predict Amino Acid Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. J. Wahba and C. L. Woodley, Molecular aspects of development in the brine shrimp Artemia, Prog. Nucl. Acid Res. Mol. Biol. 31:221 (1984).CrossRefGoogle Scholar
  2. 2.
    C. Osuna and J. Sebastian, Levels of RNA polymerases during early larval development of Artemia, Eur. J. Biochem. 109:383 (1980).PubMedCrossRefGoogle Scholar
  3. 3.
    U. Gubler and B. J. Hoffman, A simple and very efficient method of generating cDNA libraries, Gene 25:263 (1983).PubMedCrossRefGoogle Scholar
  4. 4.
    R. W. Ellis, D. DeFeo, J. M. Maryak, H. A. Young, T. Y. Shih, E. H. Chang, D. R. Lowy and E. M. Scoinick, Dual evolutionary origin for the rat genetic sequences of Harvey murine sarcoma virus, J. Virol 36:408 (1980).PubMedGoogle Scholar
  5. 5.
    M. Izquierdo, C. Arribas, J. Galcera, J. Burke and V. M. Cabrera, Characterization of a Drosophila repeat mapping at the early-ecdysone puff 63F and present in many eucaryotic genomes, Biochem. Biophys. Acta 783:114 (1984).CrossRefGoogle Scholar
  6. 6.
    E. A. Fyrberg, B. J. Bondy, N. D. Hershey, K. S. Mixter and N. Davidson, The actin genes of Drosophila: Protein coding regions are highly conserved but intron positions are not, Cell 24:107 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    G. E. Shull and J. B. Lingrel, Molecular cloning of the rat stomach (H++K+) ATPase, J. Biol. Chem. 261:16788 (1986).PubMedGoogle Scholar
  8. 8.
    C. J. Brandl, M. Green, B. Korczak and D. H. Mac Lennan, Two Ca2+ ATPase genes: Homologies and mechanistic implications of deduced amino acid sequences, Cell 44:597 (1986).PubMedCrossRefGoogle Scholar
  9. 9.
    G. E. Shull, A. Schwartz and J. B. Lingrel, Amino acid sequence of the catalytic subunit of the (Na++K+) ATPase deduced from a complementary DNA, Nature 316:691 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    M. Morohashi and M. Kawamura, Solubilization and purification of Artemia salina (Na,K)-activated ATPase and NH2-terminal amino acid sequence of its larger subunit, J. Biol. Chem. 259:14928 (1984).PubMedGoogle Scholar
  11. 11.
    G. E. Shull, J. Greeb and J. B. Lingrel, Molecular cloning of three distinct forms of the Na+, K+-ATPase α-subunit from rat brain, Biochem. 25:8125 (1986).CrossRefGoogle Scholar
  12. 12.
    R. Serrano, Structure and function of proton translocating ATPase in plasma membranes of plant and fungi. Biochem. Biophys. Acta 947:1 (1988).PubMedCrossRefGoogle Scholar
  13. 13.
    G. L. Peterson, L. Churchill, J. A. Fisher and L. E. Hokin, Structural and biosynthetic studies of the two molecular forms of the (Na++Kv)-activated adenosine triphosphatase large subunit in Artemia salina nauplii, Exp. Zool. 221:295 (1982).CrossRefGoogle Scholar
  14. 14.
    H. Grosfeld and U. Z. Littauer, The translation in vitro of mRNA from developing cysts of Artemia salina, Eur. J. Biochem. 70:589 (1976).PubMedCrossRefGoogle Scholar
  15. 15.
    J. Cruces, M.-L. Wonenburger, M. Diaz-Guerra, J. Sebastian and J. Renart, Satellite DNA in the crustacean Artemia, Gene 44:341 (1986).PubMedCrossRefGoogle Scholar
  16. 16.
    J. A. Lenstra, A. V. Vliet, A. C. Arnberg, F. V. Hemert and W. Moller, Genes coding for the elongation factor EF-la in Artemia, Eur. J. Biochem. 155:475 (1986).PubMedCrossRefGoogle Scholar
  17. 17.
    S. Aota, T. Gojobori, F. Ishibashi, T. Maruyama and T. Ikemura, Codon usage tabulated from the GenBank genetic sequence data, Nucl. Acid Res. 16:r315 (1988).CrossRefGoogle Scholar
  18. 18.
    R. Lathe, Synthetic oligonucleotide probes deduced from amino acid sequence data. Theoretical and practical considerations, J. Mol. Biol. 183:1 (1985).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Leandro Sastre
    • 1
  • Ignacio Palmero
    • 1
  • Maria-Teresa Macias
    • 1
  • Ines Gil
    • 1
  • Enrique Franco
    • 1
  • Elvira Dominguez
    • 1
  • Margarita Diaz-Guerra
    • 1
  • Miguel Quintanilla
    • 1
  • Jesus Cruces
    • 1
  • Jaime Renart
    • 1
  1. 1.Instituto de Investigaciones Biomedicas del C.S.I.C. and Departamento de BioquimicaUniversidad Autonoma de MadridMadridSpain

Personalised recommendations