Light-Induced Development of Artemia Cysts

  • A. Van der Linden
  • R. Blust
  • R. Dommisse
  • G. Criel
  • W. Decleir
Part of the NATO ASI Series book series (NSSA, volume 174)


The role of light in the initiation of development of Artemia embryos has been noticed before[1–5]. Sorgeloos and his colleagues[6, 7] also demonstrated that the light trigger is effective immediately after hydration and only under aerobic circumstances. When we started this study we focussed on the photoreceptor and the primary photoreaction mediating light induced hatching. The results of these studies revealed that the photoreceptor had absorption characteristics of a haempigment and that an oxidation-reduction reaction was involved in the primary photoreaction[8–10].


Brine Shrimp Artemia Salina Artemia Cyst Embryonic Diapause Yolk Platelet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Sorgeloos, First report on the triggering effect of light on the hatching mechanism of Artemia salina dry cysts, Mar. Biol. 22:75 (1973).CrossRefGoogle Scholar
  2. 2.
    P. Sorgeloos, De invloed van abiotische en biotische faktoren op de levenscyclus van het pekelkreeftje Artemia salina. Ph. D. thesis, State University Ghent, Belgium (1975).Google Scholar
  3. 3.
    J. P. Royan, Effect of light on the hatching and growth of Artemia salina. Mahasagar-Bull. Natn. Inst. Oceanogr., Vol. 9:83 (1976).Google Scholar
  4. 4.
    L. V. Spektorova and A. M. Syomik, The influence of incubation conditions upon Artemia hatching efficiency in three strain models, in: “Book of Abstracts. International Symposium on the Brine Shrimp, Artemia salina”, Artemia Reference Centre, Ghent (1979).Google Scholar
  5. 5.
    P. Vanhaecke, A. Cooreman and P. Sorgeloos, International study on Artemia. XV: Effect of light intensity on hatching rate of Artemia cysts from different geographical origin, Mar. Ecol. Prog. Ser. 5:111 (1981).CrossRefGoogle Scholar
  6. 6.
    P. Sorgeloos and G. Persoone, Technological improvements for the cultivation of invertebrates as food for fishes and crustaceans. II. Hatching and culturing of the brine shrimp, Artemia salina, Aquaculture 6:303 (1975).CrossRefGoogle Scholar
  7. 7.
    P. Sorgeloos, M. Eaeza-Mesa and F. Benijts and G. Persoone, Current research on the culturing of the brine shrimp Artemia salina at the State University of Ghent, Belgium in: “Proceedings 10th European Symposium on Marine Biology”, Vol 1, G. Persoone, and E. Jasper, eds., Universa Press, Wetteren (1976).Google Scholar
  8. 8.
    A. Van der Linden, R. Blust and W. Decleir, The influence of light on the hatching of Artemia cysts (Anostraca: Branchiopoda: Crustacea), Exp. Mar. Biol. Ecol. 92:207 (1985).CrossRefGoogle Scholar
  9. 9.
    A. Van der Linden, I Vankerckhoven, R. Caubergs and W. Decleir, Action spectroscopy of light-induced hatching of Artemia cysts (Branchiopoda, Crustacea), Mar. Biol. 91:239 (1986).CrossRefGoogle Scholar
  10. 10.
    A. Van der Linden, R. Blust, K. Cuypers, C. Thoeye and F. Bernaerts, An action spectrum for light-induced hatching of Artemia cysts, in: “Artemia Research and its Applications,” Vol. 2, W. Decleir, L. Moens, H. Siegers, E. Jaspers and P. Sorgeloos, eds. Universa Press, Wetteren (1987).Google Scholar
  11. 11.
    W. B. Busa, Cellular dormancy and the scope of pHi-mediated metabolic regulation, in, “Intracellular pH: Its Measurement, Regulation, and Utilization in Cellular Functions.” R. Nuccitelli and D. W. Deamer, eds., A. R. Liss, Inc. New York (1982).Google Scholar
  12. 12.
    W. B. Busa, J. H. Crowe and G. B. Matson, Intracellular pH and the metabolic Status of dormant and developing Artemia embryos, Arch. Biochem. Biophys. 216:711 (1982).PubMedCrossRefGoogle Scholar
  13. 13.
    W. B. Busa and J. H. Crowe, Intracellular pH regulates transitions between dormancy and development of brine shrimp (Artemia salina) embryos, Science 221:366 (1983).PubMedCrossRefGoogle Scholar
  14. 14.
    W. B. Busa and R. Nuccitelli, Metabolic regulation via intracellular pH, Amer. J. Phys. 246:R409 (1984).Google Scholar
  15. 15.
    J. F. Carpenter and S. C. Hand, Arrestment of carbohydrate metabolism during anaerobic dormancy and aerobic acidosis in Artemia embryos: determination of pH sensitive control points, J. Comp. Physiol. B 156:451 (1986).CrossRefGoogle Scholar
  16. 16.
    J. H. Crowe, L. M. Crowe, L. Drinkwater and W. B. Busa, Intracellular pH and anhydrobiosis in Artemia cysts, in “Artemia Research and its Applications,” Vol. 2, W. Decleir, L. Moens, H. Siegers, E. Jaspers and P. Sorgeloos. eds., Universa Press, Wetteren, (1987).Google Scholar
  17. 17.
    S. C. Hand and J. F. Carpenter, pH-induced metabolic transitions in Artemia embryos mediated by a novel hysteretic trehalase, Science 232:1535 (1986).PubMedCrossRefGoogle Scholar
  18. 18.
    S. C. Hand and E. Gnaiger, Anaerobic dormancy quantified in Artemia embryos: A calorimetric test of the control mechanisin. Science 239:1425 (1988).PubMedCrossRefGoogle Scholar
  19. 19.
    L. E. Drinkwater and J. H. Crowe, Regulation of embryonic diapause in Artemia: environmental and physiological signals, J. Exp. Zool. 241(3):297 (1987).CrossRefGoogle Scholar
  20. 20.
    A. Van der Linden, R. Blust, A. J. Van Laere and W. Decleir, Light induced release of Artemia dried embryos from diapause; analysis of metabolic status, J. Exp. Zool. 247:131 (1988).CrossRefGoogle Scholar
  21. 21.
    P. Lavens, W. Tackaert and P. Sorgeloos, International study on Artemia XLI. Influence of culture conditions and specific diapause deactivation methods on the hatchability of Artemia cysts produced in a Standard culture system. Mar. Ecol. Prog. ser. 31:179 (1986).CrossRefGoogle Scholar
  22. 22.
    B. L. Strehler, Adenosine 5’ triphosphate and creatine phosphate. Determination with luciferase. In: “Methods of Enzymatic Analysis,” H. V. Bergmeyer, ed., Academic Press, New York (1965).Google Scholar
  23. 23.
    R. Moon and J. H. Richards, Determination of intracellular pH by P magnetic resonance, J. Biol. Chem. 248:7276 (1973).PubMedGoogle Scholar
  24. 24.
    R. J. Gillies, R. Alger, J. A. den Hollander and R. G. Shulman, Intracellular pH measured by NMR: Methods and Results, in: “Intracellular pH: Its measurement, Regulation and Utilization in Cellular Functions,” R. Nuccitelli and D. W. Deamer, eds., Alan R. Liss, Inc., New York (1982).Google Scholar
  25. 25.
    M. A. Hayat, “Basic Techniques for Transmission Electron Microscopy”, Academic Press, Inc., New York (1986).Google Scholar
  26. 26.
    M. Farquhar and G. Palade, Cell junctions in the amphibian skin, J. Cell Biol. 26:263 (1965).PubMedCrossRefGoogle Scholar
  27. 27.
    J. Dutrieu, Observations biochimiques et physiologiques sur le developpement d’Artemia salina Leach, Arch. Zool. Exp. Gen. 99:1 (1960).Google Scholar
  28. 28.
    S. Muramatsu, Studies on the physiology of Artemia embryos. I. Respiration and its main Substrate during early development, Embryologia, 5:95 (1960).CrossRefGoogle Scholar
  29. 29.
    D. N. Emerson, The metabolism of hatching embryos of the brine shrimp Artemia salina. Proc. S. Dakota Acad. Sci. 42:131 (1963).Google Scholar
  30. 30.
    J. S. Clegg, The control of emergence and metabolism by external osmotic pressure and the role of free glycerol in developing cysts of Artemia salina, J. Exp. Biol. 41:879 (1964).PubMedGoogle Scholar
  31. 31.
    J. S. Clegg and F. P. Conte, A review of the cellular and developmental biology of Artemia. in: The Brine Shrimp Artemia, Physiology, Biochemistry, Molecular Biology, Vol. 2., G. Persoone, P. Sorgeloos, O. Roels and E. Jaspers, eds., Universa Press, Wetteren (1980).Google Scholar
  32. 32.
    R. Brambl, Respiration and mitochondrial biogenesis during fungal spore germination, in: “The Fungal Spore, Morphogenetic Controls,” G. Turian and H. R. Hohl, eds., Academic Press, New York (1981).Google Scholar
  33. 33.
    L. E. Hawker, The dormant spore, in: “The Fungal Spore,” D. J. Weber and W. H. Hess, eds., J. Wiley, New York (1976).Google Scholar
  34. 34.
    J. P. Jardel and P. R. V. Nayudu, Mitochondrial maturation of Artemia salina. Micron 13:365 (1982).Google Scholar
  35. 35.
    P. Lavens and P. Sorgeloos, The cryptobiotic State of Artemia cysts, its diapause deactivation and hatching: a review, in: “Artemia Research and its Application,” Vol. 3, P. Sorgeloos, D. A. Bengtson, W. Decleir, and E. Jaspers, eds., Universa Press, Wetteren (1987).Google Scholar
  36. 36.
    R. G. Stross, Light and temperature requirements for diapause release and development in Daphnia, Ecology 47:368 (1966).CrossRefGoogle Scholar
  37. 37.
    R. G. Stross and J. C. Hill, Photoperiod control of winter diapause in freshwater crustacean, Daphnia, Biol. Bull. 134:176 (1968).CrossRefGoogle Scholar
  38. 38.
    R. G. Stross, Photoperiod control of diapause in Daphnia III, Biol. Bull. 137:359 (1969).CrossRefGoogle Scholar
  39. 39.
    R. G. Stross, Photoperiod control of diapause in Daphnia. IV, Light and CO2 sensitive phases within the cycle of activation, Biol. Bull. 140:137 (1971).PubMedCrossRefGoogle Scholar
  40. 40.
    J. R. Pancella and R. G. Stross, Light induced hatching of Daphnia resting eggs, Chesapeake Science 4, n°3:135–140.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • A. Van der Linden
    • 1
    • 2
  • R. Blust
    • 1
    • 2
  • R. Dommisse
    • 2
    • 3
  • G. Criel
    • 4
    • 5
  • W. Decleir
    • 1
    • 2
  1. 1.Laboratory of Biochemistry and General ZoologyAntwerpBelgium
  2. 2.University of Antwerp RUCABelgium
  3. 3.Laboratory of Organic ChemistryAntwerpBelgium
  4. 4.Laboratory of AnatomyGhentBelgium
  5. 5.State University of GhentBelgium

Personalised recommendations