Ribosomal RNA Genes during Development in the Brine Shrimp Artemia: Structure, Expression and Evolution

  • Jack C. Vaughn
  • Hannelore T. Koller
  • Kathleen A. Frondorf
  • Patricia D. Maschner
  • Walter H. Swanson
Part of the NATO ASI Series book series (NSSA, volume 174)


Artemia is not yet a very useful organism in terms of its genetics, and certainly does not compare with Drosophila or yeast in this regard. However, the combined use of molecular and biochemical approaches can be very powerful in elucidating mechanisms of gene control during early development. To make effective use of the potential strength of this combined approach, it is important to select a suitable gene for in-depth study. A number of developmentally regulated genes have been identified in Artemia, and several excellent examples are included in this Symposium volume. The particular gene set in which we are interested is the one encoding ribosomal RNAs. Ribosomal RNA genes were the first eukaryotic genes to be isolated in pure form, and these genes are among the most extensively studied. Despite this, we do not yet have a detailed molecular understanding as to the molecular mode of regulation for this gene class. The brine shrimp Artemia offers some unusual advantages in this regard, an appreciation of which can be gleaned from reviews by Hentschel and Tata [1] and Warner et al. [2]. We believe that gene regulatory molecules, predicted to exist based on molecular data, can be isolated from the appropriate developmental stage(s) for further in-depth characterization of their molecular mode of operation.


Brine Shrimp rRNA Synthesis External Transcribe Spacer Secondary Structure Model rRNA Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. C. Hentschel and J. R. Tata, The molecular embryology of the brine shrimp, Trends Biochem. Sci. 1:97 (1976).Google Scholar
  2. 2.
    A. H. Warner, T. H. MacRae and A. J. Wahba, The use of Artemia salina for developmental studies: preparation of embryos, tRNA, ribosomes and initiation factor 2, Methods Enzymol. 60:298 (1979).PubMedCrossRefGoogle Scholar
  3. 3.
    B. Sollner-Webb and J. Tower, Transcription of cloned eukaryotic ribosomal RNA genes, Annu. Rev. Biochem. 55:801 (1986).PubMedCrossRefGoogle Scholar
  4. 4.
    I. Grummt, E. Roth and M. Paule, Ribosomal RNA transcription in vitro is species specific, Nature 296:173 (1982).PubMedCrossRefGoogle Scholar
  5. 5.
    B. Sollner-Webb and R. H. Reeder, The nucleotide sequence of the initiation and termination sites for ribosomal RNA transcription in X. laevis, Cell 18:485 (1979).PubMedCrossRefGoogle Scholar
  6. 6.
    R. Bach, B. Allet and M. Crippa, Sequence organization of the spacer in the ribosomal genes of Xenopus clivii and Xenopus borealis, Nucl. Acids Res. 9:5311 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    B. Sollner-Webb, J. Wilkinson, J. Roan and R. H. Reeder, Nested control regions promote Xenopus ribosomal RNA synthesis by RNA Polymerase I, Cell 35:199 (1983).PubMedCrossRefGoogle Scholar
  8. 8.
    J. Cruces, J. Sebastian and J. Renart, Restriction mapping of the rRNA genes from Artemia larvae, Biochem. Biophys. Res. Commun. 98:404 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    M. E. Gallego, M. Diaz-Guerra, J. Cruces, J. Sebastian and J. Renart, Characterization of two types of rRNA gene repeat units from the crustacean Artemia, Gene 48:175 (1986).PubMedCrossRefGoogle Scholar
  10. 10.
    H. Ishikawa and R. W. Newburgh, Studies of the thermal conversion of 28S RNA of Galleria mellonella to an 18S product, J. Mol. Biol. 64:135 (1977).CrossRefGoogle Scholar
  11. 11.
    L. Nelles, C. VanBroeckhoven, R. DeWachter and A. Vandenberghe, Location of the hidden break in large subunit ribosomal RNA of Artemia salina, Naturwissenschaften 71:634 (1984a).PubMedCrossRefGoogle Scholar
  12. 12.
    M. T. Andrews, J. C. Vaughn, B. A. Perry and J. C. Bagshaw, Interspersion of histone and 5S RNA genes in Artemia, Gene 51:61 (1987).PubMedCrossRefGoogle Scholar
  13. 13.
    L. Diels, R. DeBaere, A. Vandenberghe and R. DeWachter, The sequence of the 5S ribosomal RNA of the crustacean Artemia salina, Nucl. Acids Res. 9:5141 (1981).PubMedCrossRefGoogle Scholar
  14. 14.
    J. C. Bagshaw, H. B. Skinner, T. C. Burn and B. A. Perry, Nucleotide sequence of the 5S RNA gene and flanking regions interspersed with histone genes in Artemia, Nucl. Acids Res. 15:3628 (1987).PubMedCrossRefGoogle Scholar
  15. 15.
    D. Ursi, A. Vandenberghe and R. DeWachter, The sequence of the 5.8S ribosomal RNA of the crustacean Artemia salina. With a proposal for a general secondary structure model for 5.8S ribosomal RNA, Nucl. Acids Res. 10:3517 (1982).PubMedCrossRefGoogle Scholar
  16. 16.
    J. C. Vaughn, S. J. Sperbeck and M. J. Hughes, Molecular cloning and characterization of ribosomal RNA genes from the brine shrimp. Nucleotide sequence analysis and evolution of the 5.8S rRNA gene region and its flanking nucleotides, Biochim. Biophys. Acta 783:144 (1984a).CrossRefGoogle Scholar
  17. 17.
    G. N. Pavlakis, B. R. Jordan, R. M. Wurst and J. N. Vournakis, Sequence and secondary structure of Drosophila melanogaster 5.8S and 2S rRNAs and of the processing site between them, Nucl. Acids Res. 7:2213 (1979).PubMedCrossRefGoogle Scholar
  18. 18.
    B. R. Jordan, M. Latil-Damotte and R. Jourdan, Coding and spacer sequences in the 5.8S-2S region of Sciara coprophila ribosomal DNA, Nucl. Acids Res. 8:3565 (1980).PubMedCrossRefGoogle Scholar
  19. 19.
    L. Nelles, B.-L. Fang, G. Volckaert, A. Vandenberghe and R. DeWachter, Nucleotide sequence of a crustacean 18S ribosomal RNA gene and secondary structure of eukaryotic small subunit ribosomal RNAs, Nucl. Acids Res. 12:8749 (1984b).CrossRefGoogle Scholar
  20. 20.
    M. P. Roberts and J. C. Vaughn, Ribosomal RNA sequence conservation and gene number in the larval brine shrimp, Biochim. Biophys. Acta 697:148 (1982).PubMedCrossRefGoogle Scholar
  21. 21.
    J. C. Vaughn, D. J. Whitman, J. C. Bagshaw and J. C. Helder, Molecular cloning and characterization of ribosomal RNA genes from the brine shrimp, Biochim. Biophys. Acta 697:156 (1982).PubMedCrossRefGoogle Scholar
  22. 22.
    R. N. Nazar, A 5.8S rRNA-like sequence in prokaryotic 23S rRNA, Febs Lett. 119:212 (1980).PubMedCrossRefGoogle Scholar
  23. 23.
    B. Jacq, Sequence homologies between eukaryotic 5.8S rRNA and the 5’ end of prokaryotic 23S rRNA: evidences for a common evolutionary origin, Nucl. Acids Res. 9:2913 (1981).PubMedCrossRefGoogle Scholar
  24. 24.
    J. C. Vaughn, S. J. Sperbeck, W. J. Ramsey and C. B. Lawrence, A universal model for the secondary structure of 5.8S ribosomal RNA molecules, their contact sites with 28S ribosomal RNAs, and their prokaryotic equivalent, Nucl. Acids Res. 12:7479 (1984b).PubMedCrossRefGoogle Scholar
  25. 25.
    R. A. Zimmermann, Interactions among protein and RNA components of the ribosome, in: “Ribosomes,” G. Chambliss, G. R. Craven, J. Davies, K. Davis, L. Kahan and M. Nomura, eds., Univ. Park Press, Baltimore (1980).Google Scholar
  26. 26.
    V. Nowotny and K. H. Nierhaus, Initiator proteins for the assembly of the 50S subunit from Escherichia coli ribosomes, Proc. Natl. Acad. Sci. USA 79:7238 (1982).PubMedCrossRefGoogle Scholar
  27. 27.
    J. C. Vaughn and W. H. Swanson, Secondary structure of the putative large subunit assembly initiator domain at the 5’-end of 23-28S rRNAs: a general model for the ancestral molecule and its relevance to mitochondrial origins, J. Mol. Evol. (In Press, 1988b).Google Scholar
  28. 28.
    R. R. Gutell and G. E. Fox, A compilation of large subunit RNA sequences presented in a structural format, Nucl. Acids Res. 16(suppl.): rl75 (1988).CrossRefGoogle Scholar
  29. 29.
    G. E. Fox and C. R. Woese, 5S RNA secondary structure, Nature 256:505 (1975).PubMedCrossRefGoogle Scholar
  30. 30.
    D. K. McClean and A. H. Warner, Aspects of nucleic acid metabolism during development of the brine shrimp Artemia salina, Dev. Biol. 24:88 (1971).PubMedCrossRefGoogle Scholar
  31. 31.
    H. C. Birndorf, J. D’Alessio and J. C. Bagshaw, DNA-dependent RNA polymerases from Artemia embryos. Characterization of polymerases I and II from nauplius larvae, Dev. Biol. 45:34 (1975).PubMedCrossRefGoogle Scholar
  32. 32.
    Y. H. Nakanishi, T. Iwasaki, T. Okigaki and H. Kato, Cytological studies of Artemia salina. I. Embryonic development without cell multiplication after the blastula stage in encysted dry eggs, Annot. Zool. Jap. 35:223 (1962).Google Scholar
  33. 33.
    H. T. Koller, K. A. Frondorf, P. D. Maschner and J. C. Vaughn, In vivo transcription from multiple spacer rRNA gene Promoters during early development and evolution of the intergenic spacer in the brine shrimp Artemia, Nucl. Acids Res. 15:5391 (1987).PubMedCrossRefGoogle Scholar
  34. 34.
    I. Financsek, K. Mizumoto, Y. Mishima and M. Muramatsu, Human ribosomal RNA gene: nucleotide sequence of the transcription initiation region and comparison of three mammalian genes, Proc. Natl. Acad. Sci. USA 79:3092 (1982).PubMedCrossRefGoogle Scholar
  35. 35.
    J. Windle and B. Sollner-Webb, Upstream domains of the Xenopus laevis rRNA promoter are revealed in microinjected oocytes, Mol. Cell. Biol. 6:1228 (1986).PubMedGoogle Scholar
  36. 36.
    P. Boseley, T. Moss, M. Machler, R. Portmann and M. Birnstiel, Sequence organization of the spacer DNA in a ribosomal gene unit of Xenopus laevis, Cell 17:19 (1979).PubMedCrossRefGoogle Scholar
  37. 37.
    E. S. Coen and G. A. Dover, Multiple Pol I initiation sequences in rDNA spacers of Drosophila melanogaster, Nucl. Acids Res. 10:7017 (1982).PubMedCrossRefGoogle Scholar
  38. 38.
    R. H. Reeder, J. G. Roan and M. Dunaway, Spacer regulation of Xenopus ribosomal gene transcription: competition in oocytes, Cell 35:449 (1983).PubMedCrossRefGoogle Scholar
  39. 39.
    V. L. Murtif and P. M. M. Rae, In vivo transcription of rDNA spacers in Drosophila, Nucl. Acids Res. 13:3221 (1985).PubMedCrossRefGoogle Scholar
  40. 40.
    S. C. Pruitt and R. H. Reeder, Effect of intercalating agents on RNA Polymerase I promoter selection in Xenopus laevis, Mol. Cell. Biol. 4:2851 (1984).PubMedGoogle Scholar
  41. 41.
    R. DeWinter and T. Moss, The ribosomal spacer in Xenopus laevis is transcribed as part of the primary ribosomal RNA, Nucl. Acids Res. 14:6041 (1986).CrossRefGoogle Scholar
  42. 42.
    B. McStay and R. H. Reeder, A termination site for Xenopus RNA Polymerase I also acts as an element of an adjacent promoter, Cell 47:913 (1986).PubMedCrossRefGoogle Scholar
  43. 43.
    D. Tautz and G. A. Dover, Transcription of the tandem array of ribosomal DNA in Drosophila melanogaster does not terminate at any fixed point, EMBO J. 5:1267 (1986).PubMedGoogle Scholar
  44. 44.
    I. Grummt, A. Kuhn, I. Bartsch and H. Rosenbauer, A transcription terminator located upstream of the mouse rDNA initiation site affects rRNA synthesis, Cell 47:901 (1986).PubMedCrossRefGoogle Scholar
  45. 45.
    H. Fujiwara and H. Ishikawa, Structure of the Bombyx mori rDNA: initiation site for its transcription, Nucl. Acids Res. 15:1245 (1987).PubMedCrossRefGoogle Scholar
  46. 46.
    N. Cross and G. A. Dover, Tse-tse fly rDNA: an analysis of structure and sequence, Nucl. Acids Res. 15:15 (1987).PubMedCrossRefGoogle Scholar
  47. 47.
    E. O. Long, M. L. Rebbert and J. B. Dawid, Nucleotide sequence of the initiation site for ribosomal RNA transcription in Drosophila melanogaster: comparison of genes with and without insertions, Proc. Natl. Acad. Sci. USA 78:1513 (1981).PubMedCrossRefGoogle Scholar
  48. 48.
    B. D. Kohorn and P. M. M. Rae, Nontranscribed spacer sequences promote in vitro transcription of Drosophila ribosomal DNA, Nucl. Acids Res. 10:6879 (1982).PubMedCrossRefGoogle Scholar
  49. 49.
    D. Tautz, C. Tautz, D. Webb and G. A. Dover, Evolutionary divergence of Promoters and spacers in the rDNA family of four Drosophila species, Implications for molecular coevolution in multigene families. J. Mol. Biol. 195:525 (1987).PubMedCrossRefGoogle Scholar
  50. 50.
    W. H. Swanson and J. C. Vaughn, Nucleotide sequence of the putative large subunit assembly initiator domain at the 5’-end of 26S ribosomal RNA in the brine shrimp Artemia, Nucl. Acids Res. (In Press, 1988).Google Scholar
  51. 51.
    J. C. Vaughn and W. H. Swanson, A general secondary structure model for domain I in the ancestral 23-28S rRNA molecule relevance to mitochondrial origins, J. Cell Biol. (In Press, 1988a).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Jack C. Vaughn
    • 1
  • Hannelore T. Koller
    • 1
  • Kathleen A. Frondorf
    • 1
  • Patricia D. Maschner
    • 1
  • Walter H. Swanson
    • 1
  1. 1.Department of ZoologyMiami UniversityOxfordUSA

Personalised recommendations