Kinetic and Thermodynamic Parameters of Artemia Ribosome Subunit Interactions: The Effects of Polyamines

  • Dixie J. Goss
  • Thomas C. Becker
  • Donna J. Rounds
Part of the NATO ASI Series book series (NSSA, volume 174)


Virtually all eucaryotic cells contain significant amounts of the polyamines— spermine, spermidine, and putrescine. The physiological function of these amines is not well understood at the molecular level, although recent studies have demonstrated that polyamines are required for cellular growth and differentiation and that the concentration within the cell is highly regulated[1,2]. In quiescent cells polyamines are present in very small amounts, although polyamine activity can be dramatically increased within a few hours of exposure to trophic stimuli[3]. The pathway for polyamine biosynthesis has been determined, detailed descriptions are given in several recent reviews[4,5].


Ribosomal Subunit Brine Shrimp Association Reaction Polyamine Concentration Subunit Association 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U. Bachrach, Effect on growth processes, in: “Function of Naturally Occurring Polyamines”, Academic Press, New York (1973).Google Scholar
  2. 2.
    D. H. Russell, Polyamines in growth — normal and neoplastic, in: “Polyamines in Normal and Neoplastic Growth”, Raven Press, New York (1973).Google Scholar
  3. 3.
    G. Kramer and B. Hardesty, Ribosomes from Artemia cysts in cell-free translation of eukaryotic mRNA, in: “The Brine Shrimp Artemia”, G. Persoone, P. Sorgeloos, O. Roels, and E. Jaspers, eds., Universa Press, Wetteren, Belgium (1980).Google Scholar
  4. 4.
    A. E. Pegg and P. P. McCann, Polyamine metabolism and functions, Am. J. Physiol. 243:212 (1982).Google Scholar
  5. 5.
    C. W. Tabor and H. Tabor, Polyamines, Annu. Rev. Biochem. 53:749 (1984).PubMedCrossRefGoogle Scholar
  6. 6.
    D. J. Goss and T. Harrigan, Magnesium ion dependent equilibria, kinetics, and thermodynamic Parameters of Artemia ribosome dissociation and subunit association, Biochemistry 25:3690 (1986).PubMedCrossRefGoogle Scholar
  7. 7.
    H. Gorisch, D. J. Goss and L. J. Parkhurst, Kinetics of ribosomes dissociation and subunit association studied in a light-scattering stopped-flow apparatus, Biochemistry 15:5743 (1976).PubMedCrossRefGoogle Scholar
  8. 8.
    C. L. Woodley and A. J. Wahba, The development of a translation system to examine mRNA and messenger ribonucleoproteins from Artemia, in: “The Brine Shrimp Artemia,” G. Persoone, P. Sorgeloos, O. Roels and E. Jaspers, eds., Universa Press, Wetteren (1980).Google Scholar
  9. 9.
    J. M. Sperrazza and L. L. Spremulli, Quantitation of cation binding to wheat germ ribosomes; influences on subunit association equilibria and ribosome activity, Nucleic Acids Res. 11:2655 (1983).CrossRefGoogle Scholar
  10. 10.
    T. Hultin and J. E. Morris, The ribosomes of encysted embryos of Artemia salina during cryptobiosis and resumption of development, Devel. Biol. 17:143 (1968).CrossRefGoogle Scholar
  11. 11.
    A. Golub and J. S. Clegg, Protein synthesis in Artemia salina embryos. 1. Studies on polysomes, Devel. Biol. 17:644 (1968).CrossRefGoogle Scholar
  12. 12.
    D. J. Goss, D. J. Rounds, T. Harrigan, C. L. Woodley and A. J. Wahba, Effects of eucaryotic initiation factor 3 on eucaryotic ribosomal subunit equilibrium and kinetics, Biochemistry 27:1489 (1988).PubMedCrossRefGoogle Scholar
  13. 13.
    D. J. Goss and D. J. Rounds, A kinetic light-scattering study of wheat germ protein synthesis initiation factor 3 to 40S ribosomal subunits and 80S ribosomes, Biochemistry 27:3610 (1988).PubMedCrossRefGoogle Scholar
  14. 14.
    T. H. MacRae, M. Roychowdury, K. J. Houston, C. L. Woodley and A. J. Wahba, Protein synthesis in brine shrimp embryos: dormant and developing embryos of Artemia salina contain equivalent amounts of chain initiation factor 2, Eur. J. Biochem. 100:67 (1979).PubMedCrossRefGoogle Scholar
  15. 15.
    P. Nieuwenhuysen and J. Clauwaert, Physicochemical characterization of ribosomal particles from the eukaryote Artemia, J. Biol. Chem. 256:9623 (1981).Google Scholar
  16. 16.
    P. Nieuwenhuysen, F. Devoeght and J. Clauwaert, The molecular weight of Artemia ribosomes, as determined from their refractive-index increment and light-scattering intensity, Biochem. J. 197:689 (1981).PubMedGoogle Scholar
  17. 17.
    R. Fletcher and M. J. D. Powell, A rapidly convergent descent method for minimization, Comput. J. 6:163 (1963).CrossRefGoogle Scholar
  18. 18.
    N. A. Draper and H. Smith, “Applied Regression Analysis”, Wiley, New York (1966).Google Scholar
  19. 19.
    J. S. Kliber, G. Hui Bon Hui, P. Douzou, M. Graffe and M. Grunberg-Manago, Implications of electrostatic potentials on ribosomal proteins, Nucleic Acids Res. 3:3423 (1976).PubMedCrossRefGoogle Scholar
  20. 20.
    G. S. Manning, The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides, Q. Rev. Biophys. 11:179 (1978).PubMedCrossRefGoogle Scholar
  21. 21.
    P. D. Ross and S. Subramanian, Thermodynamics of protein association reactions: forces contributing to stability, Biochemistry 20:3096 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Dixie J. Goss
    • 1
  • Thomas C. Becker
    • 1
  • Donna J. Rounds
    • 1
  1. 1.Department of ChemistryHunter College of the City University of New YorkNew YorkUSA

Personalised recommendations