Advertisement

Messenger Ribonucleoproteins of Cryptobiotic Gastrulae of Artemia: Mechanisms of Activation and Repression of Non-Polysomal Messenger Ribonucleoproteins

  • H. Slegers
  • M. Aerden
Part of the NATO ASI Series book series (NSSA, volume 174)

Abstract

The mechanisms involved in the termination of dormancy of cryptobiotic gastrulae of Artemia as well as the sequential events of pre-emergence are largely unknown. Key phenomena seem to be the increase in the intracellular pH from 6.2 to > 7.9 [1], degradation of trehalose affecting the stability of intracellular membranes [2], yolk degradation by proteolytic enzymes [3,4], a shift of poly (A) polymerase from the cytosol to the cytoskeleton [5,6] and an increase in P1, P4 -bis(5′ -adenosyl) tetraphosphate (Ap4A) formed by aminoacyl tRNA synthetases from activated aminoacyladenylate and ATP and proposed to be involved in the stimulation of DNA synthesis [7]. After resumption of development one or more of these phenomena trigger the activation of stored mRNP.

Keywords

Casein Kinase Aminoacyl tRNA Synthetase Rabbit Reticulocyte Lysate Artemia Salina Ternary Complex Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. B. Busa, J. H. Crowe and G. B. Matson, Intracellular pH and the metabolic Status of dormant and developing Artemia embryos, Arch. Biochem. Biophys. 216:711 (1982).PubMedCrossRefGoogle Scholar
  2. 2.
    J. H. Crowe, L. M. Crowe, L. Drinkwater and W. B. Busa, Intracellular pH and anhydrobiosis in Artemia cysts, in “Artemia Research and its Applications”, Vol. 2, W. Decleir, L. Moens, H. Siegers, P. Sorgeloos and E. Jaspers, eds., Universa Press, Wetteren (1987).Google Scholar
  3. 3.
    R. Perona, B. Ezquieta and C. G. Vallejo, The degradation of yolk in Artemia, in “Artemia Research and its Applications,” Vol. 2, W. Decleir, L. Moens, H. Siegers, P. Sorgeloos and E. Jaspers, eds., Universa Press, Wetteren (1987).Google Scholar
  4. 4.
    A. H. Warner, The role of proteases and their control in Artemia development, in “Artemia Research and its Applications”, Vol. 2, W. Decleir, L. Moens, H. Siegers, P. Sorgeloos and E. Jaspers, eds., Universa Press, Wetteren (1987).Google Scholar
  5. 5.
    N. Jeyaraj, S. Talib, J. Louis, C. Susheela and K. Jayaraman, Occurrence of poly(A) Polymerase in particles rieh in poly(A) RNA in the developing embryos of Artemia, in “The Brine Shrimp Artemia”, Vol. 2, G. Persoone, P. Sorgeloos, O. Roels and E. Jaspers, eds., Universa Press, Wetteren (1980).Google Scholar
  6. 6.
    L. Sastre and J. Sebastian, Developmental changes in poly(A) Polymerase activity in Artemia, Eur. J. Biochem. 135:69 (198J).CrossRefGoogle Scholar
  7. 7.
    A. G. McLennan and M. Prescott, Diadenosine 5’,5“’-P1, P4-tetraphosphate in developing embryos of Artemia, Nucleic Acids Res. 12:1609 (1984).PubMedCrossRefGoogle Scholar
  8. 8.
    H. Siegers, E. De Herdt, E. Piot, H. Backhovens, C. Thoen, L. Van Hove, E. Roggen and M. Aerden, Activation of stored messenger ribonucleoproteins: Identification and function of the proteins associated with non-polysomal poly(A)-containing messenger ribonucleoproteins of cryptobiotic gastrulae of Artemia sp., in “Biochemistry and Cell Biology of Artemia”, T. H. MacRae, J. C. Bagshaw and A. H. Warner, eds., CRC Press, Boca Raton (1988).Google Scholar
  9. 9.
    E. De Herdt, E. Piot, A. Wahba and H. Siegers, Initiation factor eIF2 associated with non-polysomal poly(A)-containing messenger ribonucleoproteins of cryptobiotic gastrulae of Artemia salina, Eur. J. Biochem. 151:455 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    C. Thoen, L. Van Hove, E. Piot and H. Siegers, Purification and characterization of the messenger ribonucleoprotein-associated casein kinase II of Artemia salina cryptobiotic gastrulae, Biochim. Biophys. Acta 783:105 (1984).CrossRefGoogle Scholar
  11. 11.
    C. Thoen, L. Van Hove and H. Siegers, Identification of the Substrates of the casein kinase II associated with non-polysomal messenger ribonucleoproteins of A. salina cryptobiotic embryos, Mol. Biol. Rep. 11:69 (1986).PubMedCrossRefGoogle Scholar
  12. 12.
    L. Van Hove, C. Thoen, P. Cohen and H. Siegers, Dephosphorylation of cytoplasmic non-polysomal messenger ribonucleoproteins from cryptobiotic gastrulae of Artemia salina, Biochem. Biophys. Res. Commun. 131:1241 (1985).PubMedCrossRefGoogle Scholar
  13. 13.
    G. M. Hathaway and J. A. Traugh, Regulation of casein kinase II by 2, 3 bisphosphoglycerate in erythroid cells, J. Biol. Chem. 259:2850 (1984).PubMedGoogle Scholar
  14. 14.
    L. M. V. Raja, J. Louis and K. Jayaraman, Demonstration of the formation of 1,3 diphosphoglyceric acid as an intermediate in the high energy phosphate metabolism during reinitiation of development in Artemia, Biochim. Biophys. Acta 723:410 (1983).CrossRefGoogle Scholar
  15. 15.
    M. Prescott and A. G. McLennan, The protein kinase activity associated with the major bis(5’-adenosyl) tetraphosphate-binding protein of Artemia, in “Artemia Research and its Applications”, Vol. 2, W. Decleir, L. Moens, H. Siegers, P. Sorgeloos and E. Jaspers, eds., Universa Press, Wetteren (1987).Google Scholar
  16. 16.
    E. Piot, H. Backhovens and H. Siegers, The inhibitor ribonucleoprotein of poly(A)-containing non-polysomal messenger ribonucleoprotein of A. salina cryptobiotic embryos, FEBS Letters 175:16 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • H. Slegers
    • 1
  • M. Aerden
    • 1
  1. 1.Department of BiochemistryUniversitaire Instelling AntwerpenAntwerpen-WilrijkBelgium

Personalised recommendations