Advertisement

Developmental Abnormalities Related to Bicarbonate Ion Status during Emergence of Artemia

  • C. N. A. Trotman
  • S. P. Gieseg
  • R. S. Pirie
  • W. P. Tate
Part of the NATO ASI Series book series (NSSA, volume 174)

Abstract

Emergence of the Artemia prenauplius from its survival cyst after rehydration and the cessation of dormancy is far from being a simple process of passive rupture and it requires metabolic and osmotic activity[1]. An energy requiring mechanism is essential in the events leading up to successful emergence and inhibitors of oxidative metabolism can lead to unsuccessful emergence[2]. Emergence evidently depends on a complete and relatively rapid rupture of all membranes and components of the cyst wall external to the hatching membrane. Partial failure of this sequence is, in effect, total failure of successful emergence. We describe below how further exploitation of this biological assay system, namely incomplete emergence, points to bicarbonate ion as being an essential component in generation of the osmotic potential that energises emergence.

Keywords

Cyst Wall Osmotic Potential Abnormal Emergence Salt Gland Successful Emergence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. S. Clegg, The control of emergence and metabolism by external osmotic pressure and the role of free glycerol in the developing cysts of Artemia ulsalina, Exp. Biol. 41:879 (1964).Google Scholar
  2. 2.
    C. N. A. Trotman, B. C. Mansfield and W. P. Tate, Inhibition of emergence, hatching, and protein biosynthesis in embryonic Artemia ulsalina, Devel. Biol. 80:167 (1980).CrossRefGoogle Scholar
  3. 3.
    L. Moens and M. Kondo, The structure of Artemia ulsalina hemoglobins. A comparative characterization of four naupliar and adult hemoglobins, Eur. J. Biochem. 67:397 (1976).PubMedCrossRefGoogle Scholar
  4. 4.
    C. Herbst, Uber die zur Entwickelung der Seeigellarven Nothwendigen Anorganischen Stoffe, ihre Rolle und ihre Vertretbarkeit.. Tl 3, die Rolle der Nothwendigen Anorganischen Stoffe, Arch. f. Entwicklungsmechanik der Organismen 17:306 (1904).CrossRefGoogle Scholar
  5. 5.
    J. E. Morris and B. A. Afzelius, The structure of the shell and outer membranes in encysted Artemia salina embryos during cryptobiosis and development, Ultrastruct. Res. 20:244 (1967).CrossRefGoogle Scholar
  6. 6.
    C. N. A. Trotman, S. P. Gieseg, R. S. Pirie and W. P. Tate, Abnormal development in Artemia: defective emergence of the prenauplius with bicarbonate deficiency, J. Exp. Zoo. 243:225 (1987).CrossRefGoogle Scholar
  7. 7.
    K. Grasshoff, “Methods of Seawater Analysis,” Verlag Press, Weinheim (1976).Google Scholar
  8. 8.
    N. L. Sato, Excystment of the egg of Artemia salina in artificial seawater of various condition, Gunma J. Med. Sci. 15:102 (1967).Google Scholar
  9. 9.
    W. B. Busa, J. H. Crowe and G. B. Matson, Intracellular pH and the metabolic Status of dormant and developing Artemia embryos. Arch. Biochem. Biophys. 216:711 (1982).PubMedCrossRefGoogle Scholar
  10. 10.
    W. B. Busa and J. H. Crowe, Intracellular pH regulates transitions between dormancy and development of brine shrimp, Artemia salina, embryos. Science 221:366 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    D. De Chaffoy, G. De Maeyer-Criel and M. Kondo, On the permeability and formation of the embryonic cuticle during development in vivo and in vitro of Artemia salina embryos, Differentiation 12:99 (1978).CrossRefGoogle Scholar
  12. 12.
    G. L. Peterson, R. D. Ewing and F. P. Conte, Membrane differentiation and de novo synthesis of the (Na + K+)-activated adenosine triphosphatase during development of Artemia salina nauplii, Develop. Biol. 67:90 (1978).PubMedCrossRefGoogle Scholar
  13. 13.
    F. P. Conte, Role of C-4 pathway in crustacean Chloride cell function, Am. J. Physiol. 238:R269 (1980).PubMedGoogle Scholar
  14. 14.
    F. P. Conte, Structure and function of the crustacean larval salt gland, Int. Rev. Cytol. 91:45 (1982).CrossRefGoogle Scholar
  15. 15.
    Y. Poker and S. Sarkanen, Carbonic anhydrase, structure, catalytic versatility, and inhibition, Advan. Enzymol. 47:149 (1978).Google Scholar
  16. 16.
    I. Bertini, C. Luchinat and A. Scozzafava, Carbonic anhydrase, an insight into the zinc binding site and into the active cavity through metal substitution. Struct. Bond. 48:45 (1982).CrossRefGoogle Scholar
  17. 17.
    P. Rafiee, C. O. Matthews, J. C. Bagshaw and T. H. MacRae, Reversible arrest of Artemia development by cadmium, Can. J. Zool. 64:1633 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • C. N. A. Trotman
    • 1
  • S. P. Gieseg
    • 1
  • R. S. Pirie
    • 1
  • W. P. Tate
    • 1
  1. 1.Department of BiochemistryUniversity of OtagoDunedinNew Zealand

Personalised recommendations