Advertisement

Enzymes of Dinucleoside Oligophosphate Metabolism in Artemia Cysts and Larvae

  • Mark Prescott
  • Andrew D. Milne
  • Alexander G. McLennan
Part of the NATO ASI Series book series (NSSA, volume 174)

Abstract

After the discovery in 1963 of the abundant nucleotide store of P1, P4 -diguanosine 5′-tetraphosphate, or P1, P4 -bis (5′-guanosyl) tetraphosphate (Gp4G) in Artemia embryos[1], it was logical to search for an enzyme capable of converting it into utilisable products. Such an enzyme, originally named diguanosine tetraphosphate asymmetrical-pyrophosphohydrolase (EC 3.6.1.17) was soon discovered which cleaved Gp4G specifically to yield equimolar amounts of GTP and GMP[2]. Studies on the partially purified enzyme showed it to be primarily located in the soluble fraction of the cell, to have a molecular mass of 17,500 and to efficiently hydrolyse dinucleotides of the general structure Np4N, including Gp4G, Ap4A, Xp4X and Up4U[3,4]; it had little activity towards Gp3G which had also been found in significant quantities in embryos[2,5].

Keywords

Brine Shrimp Physarum Polycephalum Artemia Salina Luminescence Assay Artemia Cyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. J. Finamore and A. H. Warner, The occurrence of P1, P4-diguanosine 5’-tetraphosphate in brine shrimp eggs, J. Biol. Chem. 238:344 (1963).PubMedGoogle Scholar
  2. 2.
    A. H. Warner and F. J. Finamore, Isolation, purification and characterization of P1, P4-diguanosine 5’-tetraphosphate asymmetrical-pyrophosphohydrolase from brine shrimp eggs, Biochemistry, 4:1568 (1965).PubMedCrossRefGoogle Scholar
  3. 3.
    C. G. Vallejo, M. A. G. Sillero and A. Sillero, Diguanosine tetraphosphate guanylohydrolase in Artemia salina, Biochim. Biophys. Acta 358:117 (1974).PubMedCrossRefGoogle Scholar
  4. 4.
    C. G. Vallejo, C. D. Lobaton, M. Quintanilla, A. Sillero and M. A. G. Sillero, Dinucleosidetetraphosphatase in rat liver and Artemia salina, Biochim Biophys Acta 438:304 (1976).PubMedCrossRefGoogle Scholar
  5. 5.
    A. H. Warner and F. J. Finamore, Isolation, purification and characterization of P1, P3-diguanosine 5’-triphosphate from brine shrimp eggs, Biochim Biophys Acta 108:525 (1965).PubMedCrossRefGoogle Scholar
  6. 6.
    A. H. Warner, Studies on the biosynthesis and function of dinucleoside polyphosphates in Artemia embryos, in: “Regulation of Macromolecular Synthesis by Low Molecular Weight Mediators,” G. Koch and D. Richter, eds., Academic Press, New York (1969).Google Scholar
  7. 7.
    A. H. Warner, The biosynthesis, metabolism and function of dinucleoside polyphosphates in Artemia embryos: a compendium, in: “The Brine Shrimp Artemia Vol. 2, Physiology, Biochemistry, Molecular Biology,” G. Persoone, P. Sorgeloos, O. Roels and E. Jaspers, eds., Universa Press, Wetteren, Belgium (1980).Google Scholar
  8. 8.
    A. Sillero and M. A. Gunther Sillero, Interconversion of purine nucleotides in Artemia: a review, in: “Artemia Research and its Applications Vol. 2, Physiology, Biochemistry, Molecular Biology,” W. Decleir, L. Moens, H. Siegers, E. Jaspers and P. Sorgeloos, eds., Universa Press, Wetteren, Belgium (1987).Google Scholar
  9. 9.
    G. Van Denbos and F. J. Finamore, An unusual pathway for the synthesis of adenosine triphosphate by the purine-requiring organism Artemia salina, J. Biol. Chem. 249:2816 (1974).PubMedGoogle Scholar
  10. 10.
    C. D. Lobaton, C. G. Vallejo, A. Sillero and M. A. G. Sillero, Diguanosine tetraphosphatase from rat liver: Activity on diadenosine tetraphosphate and inhibition by adenosine tetraphosphate, Eur. J. Biochem. 50:495 (1975).PubMedCrossRefGoogle Scholar
  11. 11.
    J. C. Cameselle, M. J. Costas, M. A. Günther Sillero and A. Sillero, Two low Km hydrolytic activities on dinucleoside 5’, 5“’-P1, P4-tetraphosphates in rat liver, J. Biol. Chem. 259:2879 (1984).PubMedGoogle Scholar
  12. 12.
    J. C. Cameselle, M. J. Costas, M. A. Günther Sillero and A. Sillero, Bis(5’-guanosyl) tetraphosphatase in rat tissues, Biochem J. 201:405 (1982).PubMedGoogle Scholar
  13. 13.
    M. Höhn, W. Albert and F. Grummt, Diadenosine tetraphosphate hydrolase from mouse liver: Purification to homogeneity and partial characterization, J. Biol. Chem. 257:3003 (1982).PubMedGoogle Scholar
  14. 14.
    A. Moreno, C. D. Lobaton, M. A. Günther Sillero and A. Sillero, Dinucleoside tetraphosphatase from Ehrlich ascites tumour cells: inhibition by adenosine, guanosine and uridine 5’-tetraphosphates, Int. J. Biochem. 14:629 (1982).PubMedCrossRefGoogle Scholar
  15. 15.
    A. Ogilvie and W. Antl, Diadenosine tetraphosphatase from human leukemia cells: Purification to homogeneity and partial characterization, J. Biol. Chem. 258:4105 (1983).PubMedGoogle Scholar
  16. 16.
    H. Jakubowski and A. Guranowski, Enzymes hydrolyzing ApppA and/or AppppA in higher plants: purification and some properties of diadenosine triphosphatase, diadenosine tetraphosphatase and Phosphodiesterase from yellow lupin (Lupinus luteus) seeds, J. Biol. Chem. 258:9982 (1983).PubMedGoogle Scholar
  17. 17.
    P. Plateau, M. Fromant, A. Brevet, A. Gesquière and S. Blanquet, Catabolism of bis(5’-nucleosidyl) oligophosphates in Escherichia coli: metal requirements and substrate specificity of homogeneous diadenosine-5’,5“’-P1, P4-tetraphosphate pyrophosphohydrolase, Biochemistry 24:914 (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    A. Guranowski, H. Jakubowski and E. Holler, Catabolism of diadenosine-5’,5“’-P1, P4-tetraphosphate in procaryotes: purification and properties of diadenosine-5’, 5“’-P1, P4-tetraphosphate symmetrical pyrophosphohydrolase from Escherichia coli K12, J. Biol. Chem. 258:14784 (1983).PubMedGoogle Scholar
  19. 19.
    L. D. Barnes and C. A. Culver, Isolation and characterization of diadenosine-5’,5“’-P1, P4-tetraphosphate pyrophosphohydrolase from Physarum polycephalum, Biochemistry 21:6123 (1982).PubMedCrossRefGoogle Scholar
  20. 20.
    P. N. Garrison, G. M. Robberson, C. A. Culver and L. D. Barnes, Diadenosine-5’, 5“’-P1, P4-tetraphosphate pyrophosphohydrolase from Physarum polycephalum: Substrate specificity, Biochemistry 21:6129 (1982).PubMedCrossRefGoogle Scholar
  21. 21.
    P. C. Zamecnik, Diadenosine-5’,5“’-P1, P4-tetraphosphate (Ap4A): its role in cellular metabolism, Anal. Biochem. 134:1 (1983).PubMedCrossRefGoogle Scholar
  22. 22.
    E. F. Baril, S. A. Coughlin and P. C. Zamecnik, 5’,5“’-P1, P4 diadenosine tetraphosphate (Ap4A): a putative initiator of DNA replication, Cancer investigation 3:465 (1985).PubMedCrossRefGoogle Scholar
  23. 23.
    F. Grummt, Diadenosine tetraphosphate as a putative intracellular signal of eukaryotic cell cycle control, in: “Modern Cell Biology”, Vol. 6, B. H. Satir, ed., Alan R. Liss Inc., New York (1988).Google Scholar
  24. 24.
    B. R. Bochner, P. C. Lee, S. W. Wilson, C. W. Cutler and B. N. Arnes, AppppA and related adenylated nucleotides are synthesised as a consequence of oxidation stress, Cell 37:225 (1984)..PubMedCrossRefGoogle Scholar
  25. 25.
    E. Rapaport and P. C. Zamecnik, Presence of diadenosine-5’,5“’-P1, P4-tetraphosphate (Ap4A) in mammalian cells in levels varying widely with proliferative activity of the tissue: a possible “pleiotypic activator”, Proc. Natl. Acad. Sci. USA 73:3984 (1976).PubMedCrossRefGoogle Scholar
  26. 26.
    C. Weinmann-Dorsch, A. Hedl, I. Grummt, W. Albert, F. J. Ferdinand, R. R. Friis, G. Pierron W. Moll and F. Grummt, Drastic rise of intracellular adenosine(5’) tetraphospho(5’)adenosine correlates with onset of DNA synthesis in eukaryotic cells, Eur. J. Biochem. 138:179 (1984).PubMedCrossRefGoogle Scholar
  27. 27.
    A. G. McLennan and M. Prescott, Diadenosine-5’,5“’-P1, P4-tetraphosphate in developing embryos of Artemia, Nucleic Acids Res. 12:1609 (1984).PubMedCrossRefGoogle Scholar
  28. 28.
    M. F. Renart, J. Renart, M. A. G. Sillero and A. Sillero, Guanosine monophosphate reduetase from Artemia salina: inhibition by xanthosine monophosphate and activation by diguanosine tetraphosphate, Biochemistry 15:4962 (1976).PubMedCrossRefGoogle Scholar
  29. 29.
    B. Ezquieta and C. G. Vallejo, Diguanosine-5’,5“’-P1,P4-tetraphosphate causes specific inhibition and desensitization of Artemia trypsinlike protease in the hydrolysis of a high-affinity, arginine-rich substrate, Biochim. Biophys Acta 883:380 (1986).CrossRefGoogle Scholar
  30. 30.
    S. J. Gilmour and A. H. Warner, The presence of guanosine 5’-diphospho-5’-guanosine and guanosine 5’-triphospho-5’-adenosine in brine shrimp embryos, J. Biol. Chem. 253:4960 (1978).PubMedGoogle Scholar
  31. 31.
    D. Miller and A. G. McLennan, Changes in intracellular levels of Ap3A and Ap4A in cysts and larvae of Artemia do not correlate with changes in protein synthesis after heat shock, Nucleic Acids Res. 14:6031 (1986).PubMedCrossRefGoogle Scholar
  32. 32.
    K. E. Ng and L. E. Orgel, The action of a water soluble carbodiimide on adenosine 5’-polyphosphates, Nucleic Acids Res. 15:3573 (1987).PubMedCrossRefGoogle Scholar
  33. 33.
    A. Ogilvie, Determination of diadenosine tetraphosphate (Ap4A) levels in subpicomole quantities by a Phosphodiesterase luciferin-luciferase coupled assay: application as a specific assay for diadenosine tetraphosphatase, Anal. Biochem. 115:302 (1981).PubMedCrossRefGoogle Scholar
  34. 34.
    A. Ogilvie and P. Jakob, Diadenosine-5’,5“’-P1, P4-triphosphate in eukaryotic cells: identification and quantitation, Anal. Biochem. 134:382 (1983).PubMedCrossRefGoogle Scholar
  35. 35.
    P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson and D. C. Klenk, Measurement of protein using bicinchoninic acid, Anal. Biochem. 150:786 (1985).CrossRefGoogle Scholar
  36. 36.
    G. Krystal, A silver binding assay for measuring nanogram amounts of protein in solution, Anal. Biochem. 167-86 (1987).PubMedCrossRefGoogle Scholar
  37. 37.
    U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227:680 (1970).PubMedCrossRefGoogle Scholar
  38. 38.
    W. Wray, T. Boulikas, V. P. Wray and R. Hancock Silver staining of proteins in polyacrylamide gels, Anal. Biochem. 118:197 (1981).PubMedCrossRefGoogle Scholar
  39. 39.
    M. J. Costas, J. C. Cameselle, M. A. Günther Sillero and A. Sillero, Occurence of dinucleoside triphosphatase in the cytosol and particulate fractions from rat liver, Int. J. Biochem. 17:903 (1985).PubMedCrossRefGoogle Scholar
  40. 40.
    M. J. Costas, J. M. Montero, J. C. Cameselle, M. A. Günther Sillero and A. Sillero, Dinucleoside triphosphatase from rat brain, Int. J. Biochem. 16:757 (1984).PubMedCrossRefGoogle Scholar
  41. 41.
    M. A. G. Sillero, R. Villalba, A. Moreno, M. Quintanilla, C. D. Lobaton and A. Sillero, Dinucleoside triphosphatase from rat liver:purification and properties, Eur. J. Biochem. 76:331 (1977).PubMedCrossRefGoogle Scholar
  42. 42.
    F. Grummt, C. Weinmann-Dorsch, J. Schneider-Schaulies and A. Lux, Zinc as a second messenger of mitogenic induction: effects on diadenosine tetraphosphate (Ap4A) and DNA synthesis, Exp. Cell Res. 163:191 (1986).PubMedCrossRefGoogle Scholar
  43. 43.
    J. C. Cameselle, M. J. Costas, M. A. Günther Sillero and A. Sillero, Dinucleosidetetraphosphatase inhibition by Zn(II), Biochem. Biophys. Res. Commun. 113:717 (1983).PubMedCrossRefGoogle Scholar
  44. 44.
    M. Morioka and H. Shimada, Ap4A-hydrolysing activity in sea urchin embryos, Exp. Cell Res. 169:57 (1987).PubMedCrossRefGoogle Scholar
  45. 45.
    C. Hurtado, A. Ruiz, A. Sillero and M. A. Günther Sillero, Specific magnesium-dependent diadenosine-5’,5“’-P1, P3-triphosphate pyrophosphohydrolase in Escherichia coli, J. Bacteriol. 169:1718 (1987).PubMedGoogle Scholar
  46. 46.
    G. M. Blackburn, G. E. Taylor, G. R. J. Thatcher, M. Prescott and A. G. McLennan, Synthesis and resistance to enzymic hydrolysis of sjeregchemically-defined phosphonate and thiophosphate analogues of P1, P4-bis(5’-adenosyl) tetraphosphate, Nucleic Acids Res. 15:6991 (1987).PubMedCrossRefGoogle Scholar
  47. 47.
    A. H. Warner and F. J. Finamore, Nucleotide metabolism during brine shrimp embryogenesis, J. Biol. Chem. 242:1933 (1967).PubMedGoogle Scholar
  48. 48.
    M. J. Costas, J. C. Cameselle and A. Sillero, Mitochondrial location of rat liver dinucleoside triphosphatase, J. Biol. Chem. 261:2064 (1986).PubMedGoogle Scholar
  49. 49.
    P. C. Beers, Diguanosine tetraphosphate pyrophosphohydrolase in the development of the brine shrimp, Artemia salina, Dissertation, University of Windsor, Ontario (1971).Google Scholar
  50. 50.
    H. Coste, A. Brevet, P. Plateau and S. Blanquet, Non-adenylated bis(5’-nucleosidyll) tetraphosphates occur in Saccharomyces cerevisiae and in Escherichia coli and accumulate upon temperature shift or exposure to cadmium, J. Biol. Chem. 262:12096 (1987).PubMedGoogle Scholar
  51. 51.
    A. H. Warner, J. G. Puodziukas and F. J. Finamore, Yolk platelets in brine shrimp embryos; site of biosynthesis and storage of the diguanosine nucleotides, Exp. Cell Res. 70:365 (1972).PubMedCrossRefGoogle Scholar
  52. 52.
    C. G. Vallejo, R. Perona, R. Garesse and R. Marco, The stability of the yolk granules of Artemia. An improved method for their isolation and study, Cell Differentiation 10:343 (1981).CrossRefGoogle Scholar
  53. 53.
    W. Filipowicz, Y. Furiuchi, J. M. Sierra, S. Muthukrishnan, A. J. Shatkin and S. Ochoa, A protein binding the methylated 5’-terminal sequence m GpppN of eukaryotic messenger RNA, Proc. Natl. Acad. Sci. USA 73:1559 (1976).PubMedCrossRefGoogle Scholar
  54. 54.
    C. Weinmann-Dorsch and F. Grummt, Diadenosine tetraphosphate is compartmentalized in nuclei of mammalian cells, Exp. Cell Res. 165:550 (1986).PubMedCrossRefGoogle Scholar
  55. 55.
    G. Swarup, S. Cohen and D. L. Garbers, Selective dephosphorylation of proteins containing phosphotyrosine by alkaline phosphatases, J. Biol. Chem. 256:8197 (1981).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Mark Prescott
    • 1
  • Andrew D. Milne
    • 1
  • Alexander G. McLennan
    • 1
  1. 1.Department of BiochemistryUniversity of LiverpoolLiverpoolUK

Personalised recommendations